Новый корабль для перевозки сжиженного газа. Судно-газовоз. Увеличение вместимости LNG-танкеров

Уже много веков, как торговые суда и боевые корабли бороздят океанские просторы. Порой люди строят такие махины, что, смотря на фотографии, с трудом можно их представить. Эти громадины перевозят людей, грузы, нефть и газ. О 6 самых больших плавсредствах в мире – далее в обзоре.

1. Супертанкер Knock Nevis


Самое длинное судно, когда-либо построенное, - это нефтяной танкер Knock Nevis, до этого известный как Jahre Viking. Knock Nevis также считается самым большим объектом вообще, созданным человеком. Его максимальная длина 458,45 метров, а водоизмещение 260 941 тонна.


Супертанкер впервые вышел на воду в 1979 году, когда покинул верфь Sumitomo Heavy Industries в Японии. Судно перевозило сырую нефть по всему миру и в 1988 году даже попало под бомбардировку во время ирано-иракской войны. Судно загорелось в прибрежных водах и затонуло, его полностью списали. После окончания войны Jahre Viking подняли, отремонтировали и снова ввели в строй.

Для управления супертанкером нужен экипаж всего из 35 человек. Махина приводится в действие одним 9-метровым винтом, который делает 75 оборотов в минуту. Благодаря этому достигается крейсерская скорость 16 узлов (30 км/ч). Чтобы затормозить, судну нужно 9 километров, а для разворота – 3 километра водного пространства.

За свою историю судно неоднократно меняло свое имя, владельцев и порт приписки. В 2009 году танкер совершил свой последний рейс в Индию, после чего его разрезали на металл.

2. Авианосец USS Enterprise


Американский USS Enterprise – это самый большой в мире военный корабль. Это атомный авианосец, также известный как CVA-65. Это уже восьмой корабль с таким названием в американском флоте, но самый громадный из всех. Его длина 342 метра и он может перевозить до 4600 военнослужащих и 90 самолетов.

Атомная силовая установка из восьми реакторов выдает максимальную мощность 280 000 л.с., благодаря чему корабль может развивать скорость 33,6 узлов (62 км/ч). Эти характеристики выглядят еще более внушительно, если учесть, что USS Enterprise ввели в строй в 1962 году. В 2017 году, после 55 лет службы, корабль официально списали. До этого он успел повидать Кубинский кризис, войну во Вьетнаме, войну в Ираке, где представлял военную мощь США.

3. Газовоз Q-Max


Крупнейшими в мире газовозами являются суда Q-Max. Их водоизмещение 162 400 тонн, длина 345 м, ширина – 55 метров. Суда Q-max вмещают до 266 000 кубических метров природного газа и развивают скорость до 19,5 узлов (36 км/ч).

На данный момент в мире 14 газовозов класса Q-Max, стоимость каждого гиганта составляет 290 миллионов долларов. Суда были построены компаниями Samsung Heavy Industries, Hyundai Heavy Industries и Daewoo Shipbuilding & Marine Engineering. Первый газовоз в серии («Моза») завершили в 2007 году на верфи в Южной Корее. Свое имя судно получило в честь второй жены правителя Катара.

4. Контейнеровоз CSCL Globe


В ноябре 2014 года проведена церемония именования крупнейшего в мире контейнерного судна CSCL Globe. Это первый из пяти контейнеровозов, заказанных китайской транспортной компанией CSCL в 2013 году. Судно спроектировано для плавания по маршруту из Азии в Европу. Гигантская посудина длиной 400 метров имеет водоизмещение 186 000 тонн и может перевозить до 19 100 морских контейнеров.

На CSCL Globe использован двигатель MAN B&W с электронным управлением мощностью 77 200 л.с. высотой 17,2 метра.

5. Harmony of the Seas


Уже несколько десятилетий подряд компания Royal Caribbean International строит новые круизные лайнеры, которые все больше предыдущих. В 2016 году совершил свой первый вояж Harmony of the Seas длиной 362 метра. Судно вмещает 2200 членов экипажа и 6000 пассажиров, которые путешествуют по Средиземноморью, Атлантике и Карибскому морю.


Водоизмещение Harmony of the Seas составляет 225 282 тонны, судно достигает максимальной скорости 22,6 узлов (41,9 км/ч).

На борту множество развлекательных мероприятий, чтобы не скучать несколько недель подряд: спа, казино, квест-комната, каток, симулятор серфинга, театр, две стенки для скалолазания, зиплейн, бассейны, баскетбольная площадка, небольшое поле для гольфа и даже аквапарк.


Стоимость постройки Harmony of the Seas оценивается в миллиард долларов, что делает его одним из самых дорогих коммерческих судов, когда-либо построенных.

6. Супертанкеры класса TI


Крупнейшими нефтяными танкерами, которые еще эксплуатируются, являются супертанкеры класса TI. Это суда TI Africa, TI Asia, TI Europe и TI Oceania. Мега-танкеры построили в Южной Корее в 2003 году для греческой компании Hellespont.


Суда класса TI длиной «всего» 380 метров - на 78 метров короче, чем Knock Nevis. Водоизмещение каждого из них 234 006 тонн и под полной нагрузкой они могут развивать скорость 16,5 узлов (30,5 км/ч). Всего построили 4 океанских гиганта, которые эксплуатируются до сих пор.

А еще совсем недавно рекордными считались


Особенности обеспечения безопасной эксплуатации судовых технических средств танкеров-газовозов

За последние 10 лет практически в три раза выросло количество судов для перевозки сжиженного газа - газовозов. Этот тип судов относится к категории повышенной технической сложности по причине используемого технологического оборудования и повышенной опасности из-за характера перевозимого груза.

Данный тип судов является сравнительно новым в отечественной практике, ввиду чего особенности безопасной эксплуатации использующихся на них технических средств недостаточно проработаны и требуют систематизации и применения современных подходов к организации технологических процессов.

А.И. Епихин , к.т.н., доцент кафедры «Судовые тепловые двигатели» ФБГОУ ВО «ГМУ имени адмирала Ф.Ф. Ушакова»

Энергетические установки танкеров-газовозов

Суда-газовозы ввиду особенностей перевозимого груза характеризуются более высокой скоростью хода, поэтому их энерговооруженность значительно выше сопоставимых по дедвейту нефтеналивных танкеров.

Вторым существенным отличием СЭУ газовозов является то, что на долю технологических потребителей приходится до 30% от установленной мощности ГД, ввиду чего практика использования раздельных СЭУ и мощных технологических теплопроизводящих и теплопотребляющих установок на газовозах встречается достаточно часто.

Третьим существенным отличием современных газовозов от других типов судов является территория использования - за последние 20 лет значительно увеличилась добыча газа в отдаленных приарктических и арктических регионах, прокладка газопроводов по которым является практически невозможной, вследствие чего газовозы, вводимые в эксплуатацию на протяжении последних лет, особенно в РФ, предусматривают высокие показатели по ледовому классу, при этом многие из них комплектуются электрическими гребными установками типа Azipod, что ввиду ряда технических, конструктивных и технологических причин вносит дополнительные условия в вопрос обеспечения безопасности эксплуатации СТС.

Безопасность эксплуатации СТС

Современные СТС характеризуются высоким уровнем сложности протекающих в них технологических процессов, что в свою очередь ведет к увеличению количества контролируемых параметров и их возможных сочетаний, повышая нагрузку на операторов данных систем. При этом происходит соответствующее увеличение вероятностей возникновения рисков опасных ситуаций, связанных с достижением рядом параметров опасных технологических процессов таких взаимных сочетаний, при которых существенно повышается вероятность возникновения нештатных ситуаций. Вследствие этого в условиях значительной нагрузки на операторов и большого объема аналитической информации появляются риски принятия некорректных решений, которые могут привести к аварийным ситуациям на судне.

Большая часть вышеперечисленных СТС являются в различной степени автоматизированными и оборудованы контрольно-измерительными и управляющими приборами, что в значительной степени упрощает организацию контрольно-диагностических и управляющих воздействий, а также мониторинговые функции при их эксплуатации, однако в любом случае реализация комплексной концепции обеспечения безопасной эксплуатации технических систем судна в качестве основополагающего решения требует наличия средств непрерывного технического контроля за всеми процессами, протекающими в узлах и элементах СТС.

Наибольшей опасностью характеризуются аварийные ситуации, которые приводят к потере хода судна-газовоза, поскольку могут привести к таким авариям, как столкновение с препятствием, посадка на грунт, навал, опрокидывание в шторм и пр.

Неисправности паротурбинных установок

Применительно к выбранному типу судов необходимо рассмотреть паротурбинные установки, использующиеся в пропульсивных установках, так как их неисправности ведет к потере хода судна.

Переменные режимы работы турбин нарушают тепловое равновесие деталей, что приводит к появлению температурных напряжений и деформаций корпусов и роторов турбин, что создает условия возникновения отказов.

Пусковые и остановочные, а также реверсивные режимы работы судовой паровой турбины в значительной степени определяют ее надежность, требуют наиболее трудоемких и ответственных операций по управлению и обслуживанию.

Основными видами повреждений корпуса турбин являются трещины, деформации, утонение стенок вследствие коррозии и эрозии.

К возможным повреждениям диафрагм относят: прогиб, трещины, раковины, выкрашивания металла в местах крепления (заливки) лопаток (у корня лопаток) и выход их из плоскости диафрагмы, забоины, трещины и вмятины на лопатках, обрыв лопаток, коррозии и эрозия, подъем диафрагм над плоскостью разъема.

К типичным повреждениям валов роторов относят: износ шеек, приводящий к эллиптичности и конусности, задиры, риски, царапины, забоины на шейках, коррозию, прогиб вала ротора.

Диски паровых турбин могут быть повреждены в основном из-за неравномерного распределения температур вследствие нарушений правил технической эксплуатации ТЗА.

К основным видам повреждений дисков относят: уменьшение толщины вследствие коррозии, трещины, повреждения при задевании о диафрагмы, ослабление посадки на валу, разрыв.

Для лопаток характерно эрозионное изнашивание входной кромки капельками воды, попадающей вместе с паром. Правила технической эксплуатации устанавливают минимальную степень сухости 0,86-0,88. Больше всего изнашивается средняя часть лопатки. Проходное сечение лопаток может заноситься солями котловой воды. На последних ступенях турбины низкого давления занос наблюдается относительно редко, так как влажный пар смывает отложения солей.

Повреждения лабиринтовых уплотнений связаны с изнашиванием и смятием острых концов гребешков, а также с их срывом. Причины, вызывающие повреждения лабиринтовых уплотнений, разнообразны: вибрация или осевой сдвиг ротора, коробление корпуса уплотнения, неравномерное расширение ротора и статора, неправильная сборка.

При вибрации турбины, когда амплитуды абсолютных перемещений достигают значений, при которых выбираются радиальные зазоры, происходит касание вала об уплотнения, смятие гребешков, риски и натиры на роторе. Смятие гребешков увеличивает зазоры, нарушает нормальную работу турбины.

Опорные и упорные подшипники скольжения турбинных механизмов являются наиболее уязвимыми узлами. В то же время они наиболее ответственны, так как от их технического состояния зависит взаимное положение ротора и корпуса.

Упорные колодки упорных подшипников подвергаются изнашиваниям, аналогичным вкладышам опорных подшипников. От целостности слоя антифрикционного материала подушек зависит осевое положение ротора относительно корпуса. В случае аварийного изнашивания антифрикционного материала колодок происходит осевой сдвиг ротора, касание деталей ротора о корпус и отказ турбины.

Практически все вышеперечисленные неисправности могут привести к аварийным ситуациям в турбине. Также следует отметить, что подавляющее большинство неисправностей возникает по причине недостатков, допущенных при технической эксплуатации паротурбинных установок, вызванных недопустимыми рабочими режимами, несвоевременной заменой частей, узлов и агрегатов ПТУ.

Основные положения методики безопасной эксплуатации СТС

Методика безопасной эксплуатации должна позволить произвести реализацию комплекса контрольно-аналитических мероприятий, позволяющих обеспечивать постоянное наблюдение за параметрами опасных технологических процессов в судовых технических системах, направленных на исключение вероятностей принятия операторами некорректных решений.

В контексте анализа практики эксплуатации СТС в различных условиях следует отметить, что на показатели безопасности оказывает влияние ряд неравнозначных факторов, изменяющихся по различным случайным законам. В качестве двух основных факторов, наиболее часто становящихся причинами возникновения аварийных ситуаций, следует выделить внезапные неисправности СТС и воздействие т.н. человеческого фактора. Также в рамках настоящего исследования выдвигается гипотеза о том, что риск возникновения внезапных неисправностей СТС в некоторой мере находится в зависимости от действий операторов, т.е. того же самого человеческого фактора, поскольку само по себе явление внезапных отказов технических средств, вызываемое, как правило, возникающими дефектами в конструкционных и технологических материалах при проведении корректной политики эксплуатации и ППР, является весьма маловероятным, поскольку статистическая частота их возникновения на один-два порядка ниже фактической частоты чрезвычайных происшествий на судах.

На сегодняшний день существует ряд методик, использование которых позволяет в различной степени повысить уровень безопасности эксплуатации СТС, однако данные методики ориентированы на ограниченные типы СТС и судов и не обладают необходимым уровнем универсальности для их широкого применения на современном флоте.

Предполагаемая методика должна характеризоваться применимостью к современным судовым техническим средствам в контексте обеспечения их безопасной эксплуатации, снижения риска принятия неправильных решений в условиях больших потоков информации и дефицита времени, выработки стратегии обслуживания для предупреждения возникновения нештатных ситуаций, повышения экологической безопасности и снижения риска для персонала. Это должно быть достигнуто разработкой системы контроля и управления выявленными опасными технологическими процессами, поэтому для ее синтеза необходимо определить те процессы, которые в наибольшей степени влияют на функционирование судна в целом или на наименее ремонтопригодные в судовых условиях механизмы, узлы и элементы, выход которых из строя может повлечь за собой катастрофические последствия. Для этого необходимо внедрить систему контроля параметров и иметь алгоритм прогнозирования развития событий, определения технического состояния и на основании этого выдавать рекомендации обслуживающему персоналу.

Такой диагностический алгоритм предусматривает циклический опрос и дискретизацию параметров во время эксплуатации объекта и в случае отклонений хотя бы одного из них за поле допусков - поиск аналогичной комбинации в эталонной матрице. По найденному номеру ситуации оператору могут быть выданы в графической и текстовой форме диагнозы, рекомендации и прогнозы.

Заключение

Для реализации вышеприведенных тезисов должна быть разработана методика технической диагностики и проведения испытаний отдельных узлов и агрегатов судовых энергетических установок с целью выявления их пригодности к дальнейшей эксплуатации и определения их остаточного ресурса. Комплексная методика технической диагностики включает в себя совокупность методов инструментального контроля, таких как дефектоскопия, эндоскопия, трибологический анализ технологических жидкостей, испытания при различных режимах температуры и давления и пр. Необходимо предусмотреть возможность непрерывного контроля основных параметров технологических процессов эксплуатации судовых технических систем с целью обеспечения возможности прогнозирования и предупреждения опасных ситуаций, связанных с выходом значений контролируемых параметров их областей допустимых диапазонов.

Также необходимо обеспечить разработку комплекса организационно-технологических мероприятий, способствующих обеспечению безопасной эксплуатации и снижению аварийности судовых систем. Здесь подразумеваются благоприятные эксплуатационные режимы, возможность предупреждения нештатных ситуаций, а также использование систем контроля и управления технологическими процессами с анализом возможности и необходимости дополнения СТС приборами контроля и безопасности.

Морские вести России №15 (2015)


Эффективность морских перевозок российского СПГ может быть существенно увеличена благодаря применению новейших технологических разработок.

Выход России на мировой рынок СПГ совпал с появлением усовершенствованных технологий морской транспортировки сжиженного газа. В строй вошли первые суда-газовозы и приемные терминалы нового поколения, способные значительно сократить стоимость перевозки СПГ. Компания «Газпром» имеет уникальную возможность создать свою систему транспортировки сжиженного газа, используя новейшие достижения в этой области, и получить преимущества перед конкурентами, которым потребуется длительное время для технического перевооружения.

Учесть передовые тенденции

Запуск первого в России завода СПГ на Сахалине, подготовка к строительству еще более крупного производства на базе Штокмановского месторождения и разработка проекта завода СПГ на Ямале, включают морские перевозки сжиженного газа в список критически важных для нашей страны технологий. Это делает актуальным анализ последних тенденций в развитии морского транспорта СПГ, с тем, чтобы в разработку отечественных проектов закладывались не только существующие, но и перспективные технологии.
Из реализованных в последние годы проектов можно выделить следующие направления в повышении эффективности морских перевозок СПГ:
1. Увеличение вместимости LNG-танкеров;
2. Увеличение доли судов с танками мембранного типа;
3. Использование в качестве судовой энергетической установки дизельных двигателей;
4. Появление глубоководных LNG-терминалов.

Увеличение вместимости LNG-танкеров

На протяжении более чем 30-ти лет, максимальная вместимость LNG-танкеров не превышала 140-145 тыс. куб. м, что эквивалентно грузоподъемности 60 тыс. т СПГ. В декабре 2008 года в строй был введен LNG-танкер Mozah (Рис. 1), типа Q-Max, головной в серии из 14-ти судов, вместимостью 266 тыс. куб. м. По сравнению с крупнейшими существующими судами, его вместимость больше на 80%. Одновременно с постройкой танкеров типа Q-Max, на южнокорейских верфях были размещены заказы на строительство 31-го судна типа Q-Flex, вместимостью по 210-216 тыс. куб. м, что почти на 50% больше, чем у существующих судов.
По информации компании Samsung Heavy Industries, на верфи которой был построен Mozah, в обозримом будущем вместимость LNG-танкеров не превысит 300 тыс. куб. м, что связано с технологическими сложностями их постройки. Однако, увеличение вместимости судов типов Q-Max и Q-Flex достигнуто только за счет роста длины и ширины корпуса, при сохранении стандартной для крупных LNG-танкеров осадки в 12 метров, что определяется глубинами у существующих терминалов. В ближайшее десятилетие появится возможность эксплуатировать газовозы с осадкой 20-25 м, что позволит увеличить вместимость до 350 тыс. куб. м и повысить ходовые качества за счет улучшения гидродинамических обводов корпуса. Это также сократит стоимость строительства, так как большие по вместимости танкеры можно будет строить без увеличения размера доков и стапелей.
При организации экспорта СПГ из России необходимо оценить возможность использования судов увеличенной вместимости. Постройка судов вместимостью 250-350 тыс. куб. м позволит сократить удельные затраты на транспортировку российского газа и получить конкурентное преимущество на зарубежных рынках.

Увеличение доли мембранных танкеров

В настоящее время на LNG-танкерах используются два основных типа грузовых танков (резервуаров, в которых перевозится СПГ): вкладные сферические (система Kvaerner-Moss) и встроенные призматические мембранные (система Gas Transport - Technigas) . Вкладные сферические танки имеют толщину 30-70 мм (экваториальный пояс - 200 мм) и изготавливаются из алюминиевых сплавов. Они устанавливаются («вкладываются») в корпус танкера без соединения с корпусными конструкциями, опираясь на днище корабля через специальные опорные цилиндры. Призматические мембранные танки имеют форму, близкую к прямоугольной. Мембраны изготавливаются из тонкого (0.5-1.2 мм) листа легированной стали либо инвара (сплав железо-никель) и являются лишь оболочкой, в которую загружается сжиженный газ. Все статические и динамические нагрузки через слой теплоизоляции передаются на корпус судна. Безопасность требует наличия основной и вторичной мембраны, обеспечивающей сохранность СПГ на случай повреждения основной, а также двойного слоя теплоизоляции - между мембранами и между вторичной мембраной и корпусом корабля.
При вместимости танкера до 130 тыс. куб. метров использование сферических танков более эффективно, чем мембранных, в диапазоне 130-165 тыс. куб. м их технико-экономические характеристики примерно равны, при дальнейшем увеличении вместимости использование мембранных танков становится предпочтительным.
Мембранные танки примерно вдвое легче, чем сферические, их форма позволяет использовать корпусное пространство корабля с максимальной эффективностью. Благодаря этому, мембранные танкеры имеют меньшие размеры и водоизмещение в расчете на единицу грузоподъемности. Они дешевле при постройке и экономичнее в эксплуатации, в частности, за счет более низких портовых сборов и платы за проход через Суэцкий и Панамский каналы.
В настоящее время, танкеров со сферическими и мембранными резервуарами примерно поровну. Благодаря росту вместимости, в ближайшем будущем мембранные танкеры будут преобладать, среди строящихся и планируемых к постройке судов их доля около 80% .
Применительно к российским условиям, важной особенностью судов является возможность эксплуатации в арктических морях. По мнению специалистов, сжатия и ударные нагрузки, возникающие при преодолении ледовых полей, опасны для мембранных танкеров, что делает рискованным их эксплуатацию в тяжелых ледовых условиях. Производители мембранных танкеров утверждают обратное, приводя расчеты, что мембраны, особенно гофрированные, обладают высокой деформативной податливостью, что исключает их разрыв даже при значительном повреждении корпусных конструкций. Однако нельзя гарантировать, что мембрана не будет пробита элементами этих самых конструкций. Кроме того, судно с деформированными танками, даже сохранившими герметичность, не может быть допущено к дальнейшей эксплуатации, а замена части мембран требует длительного и дорогостоящего ремонта. Поэтому, проекты ледовых LNG-танкеров предусматривают применение вкладных сферических танков, нижняя часть которых отстоит на значительном удалении от ватерлинии и подводной части борта.
Необходимо рассмотреть возможность постройки мембранных танкеров для вывоза СПГ с Кольского полуострова (Териберка). Для завода СПГ на Ямале, по всей видимости, могут быть использованы только суда со сферическими танками.

Применение дизелей и бортовых установок по сжижению газа

Особенностью судов новых проектов стало применение в качестве главных двигателей дизельных и дизель-электрических установок, более компактных и экономичных, чем паровые турбины. Это позволило существенно сократить расход топлива и уменьшить размеры машинного отделения. До недавнего времени, LNG-танкеры оснащались исключительно паротурбинными установками, способными утилизировать испаряющийся из резервуаров природный газ. Сжигая испарившийся газ в паровых котлах, турбинные LNG-танкеры покрывают до 70% потребности в топливе.
На многих судах, в том числе типов Q-Max и Q-Flex, проблема испарения СПГ решена за счет размещения на борту установки для сжижения газа. Испарившийся газ вновь сжижается и возвращается в резервуары. Бортовая установка для повторного сжижения газа заметно удорожает LNG-танкер, но на линиях значительной протяженности ее применение считается оправданным.
В перспективе, проблема может быть решена за счет снижения испаряемости. Если для судов, построенных в 1980-х гг., потери на испарение СПГ составляли 0.2-0.35% от объема груза в сутки, то на современных судах это показатель ниже примерно вдвое - 0.1-0.15% . Можно ожидать, что в ближайшее десятилетие уровень потерь на испаряемость будет снижен еще в два раза.
Можно предположить, что в условиях ледового плавания LNG-танкера, оснащенного дизельным двигателем, наличие бортовой установки по сжижению газа является необходимым, даже при сниженном уровне испаряемости. При плавании в ледовых условиях, полная мощность двигательной установки будет использоваться только на части маршрута и в этом случае объем испарившегося из резервуаров газа превысит возможности двигателей по его утилизации.
Новые танкеры для перевозки СПГ должны оснащаться дизельными двигателями. Наличие бортовой установки для сжижения газа, по всей видимости, будет целесообразно как при работе на наиболее протяженных маршрутах, например, на восточное побережье США, так и при челночных рейсах с полуострова Ямал.

Появление глубоководных LNG-терминалов

Первый в мире рейдовый терминал по приему и регазации СПГ, Gulf Gateway, вошел в строй в 2005 году, став также первым терминалом, построенным в США за последние 20 лет. Рейдовые терминалы размещаются на плавучих сооружениях или искусственных островах, на значительном удалении от береговой черты, нередко - за пределами территориальных вод (так называемые оффшорные терминалы). Это позволяет сократить сроки строительства, а также обеспечить удаление терминалов на безопасное расстояние от береговых объектов. Можно ожидать, что создание рейдовых терминалов в ближайшее десятилетие значительно расширит возможности Северной Америки по импорту СПГ. В США действует пять терминалов и существуют проекты строительства еще примерно 40-ка, из них 1/3 - рейдовых.
Рейдовые терминалы могут принимать суда со значительной осадкой. Глубоководные терминалы, например, Gulf Gateway, вообще не имеют ограничений по осадке судов, проекты других предусматривают осадку до 21-25 м. В качестве примера, можно привести проект терминала BroadWater. Терминал предлагается расположить в 150 км северо-восточнее Нью-Йорка, в защищенном от волн проливе Лонг-Айленд. Терминал будет состоять из небольшой каркасно-свайной платформы, установленной на глубине 27 метров и плавучей установки по хранению и регазации (Floating Storage and Regasification Unit - FSRU), длиной 370 и шириной 61 метр, которая одновременно будет служить причалом для LNG-танкеров с осадкой до 25 метров (Рис. 2 и 3) . Проекты ряда береговых терминалов также предусматривает обработку судов с увеличенной осадкой и вместимостью 250-350 тыс. куб. м.
Хотя далеко не все проекты новых терминалов будут реализованы, в обозримом будущем большая часть СПГ будет ввозится в Америку через терминалы, способные принимать LNG-танкеры с осадкой более 20 м. В более отдаленной перспективе, аналогичные терминалы будут играть заметную роль в Западной Европе и в Японии.
Постройка в Териберке отгрузочных терминалов, способных принимать суда с осадкой до 25 м, позволит получить конкурентное преимущество при экспорте СПГ в Северную Америку, а в перспективе и в Европу. В случае реализации проекта завода СПГ на Ямале, мелководность Карского моря у побережья полуострова исключает применение судов с осадкой более 10-12 метров.

Выводы

Заказ сразу 45-ти сверхкрупных LNG-танкеров типов Q-Max и Q-Flex изменил сложившиеся представления об эффективности морских перевозок СПГ. По информации заказчика этих судов, Qatar Gas Transport Company, увеличение единичной вместимости танкеров, а также ряд технических усовершенствований, позволит сократить затраты на транспортировку СПГ на 40%. Стоимость постройки судов, в расчете на единицу грузоподъемности, на 25% ниже. В этих судах еще не реализован весь набор перспективных технических решений, в частности увеличенная осадка и улучшенная теплоизоляция танков.
Каким же будет «идеальный» LNG-танкер ближайшего будущего? Это будет судно вместимостью 250-350 тыс. куб. м СПГ и осадкой более 20 м. Мембранные резервуары с улучшенной теплоизоляцией сократят испаряемость до 0.05-0.08% от объема перевозимого СПГ в сутки, а бортовая установка по сжижению газа практически полностью исключит потери груза. Дизельная энергетическая установка обеспечит скорость около 20 узлов (37 км/ч). Постройка еще более крупных судов, обладающих всем комплексом перспективных технических решений, позволит сократить стоимость перевозки СПГ вдвое по сравнению с существующим уровнем, а затраты на постройку судов - на 1/3.

Снижение стоимости морских перевозок СПГ будет иметь следующие последствия:

1. СПГ получит дополнительные преимущества перед «трубным» газом. Расстояние, на котором СПГ эффективнее трубопровода, сократится еще на 30-40%, с 2500-3000 км до 1500-2000 км, а для подводных трубопроводов - до 750-1000 км.
2. Увеличатся расстояния морских перевозок СПГ, логистические схемы станут более сложными разнообразными.
3. У потребителей будет возможность диверсифицировать источники СПГ, что увеличит конкуренцию на этом рынке.

Это станет значительным шагом на пути к формированию единого глобального газового рынка, вместо двух существующих сегодня локальных рынков СПГ - Азиатско-Тихоокеанского и Атлантического. Дополнительный импульс к этому даст модернизация Панамского канала, которую планируется завершить к 2014-2015 гг. Увеличение размеров шлюзовых камер в канале с 305х33.5 м до 420х60 м, позволит крупнейшим LNG-танкерам свободно перемещаться между двумя океанами.
Увеличение конкуренции требует от России максимально использовать новейшие технологии. Цена ошибки в этом вопросе будет крайне высока. LNG-танкеры, в силу высокой стоимости, эксплуатируются по 40 и более лет. Заложив в транспортные схемы морально устаревшие технические решения, «Газпром» на десятилетия вперед подорвет свои позиции в конкурентной борьбе на рынке СПГ. Напротив, обеспечив перевозки между глубоководным отгрузочным терминалом в Териберке и рейдовыми терминалами в США с помощью крупнотоннажных судов с увеличенной осадкой, российская компания превзойдет конкурентов из Персидского залива по эффективности поставок.

Завод СПГ на Ямале не сможет использовать наиболее эффективные LNG-танкеры в силу мелководности акватории и ледовых условий. Лучшим решением, вероятно, станет фидерная система транспортировки, с перевалкой СПГ через Териберку.
Перспективы широкого использования морских перевозок при экспорте газа, ставит на повестку дня вопрос об организации строительства LNG-танкеры в России, или хотя бы участия российских предприятий в их постройке. В настоящее время, ни одно из отечественных судостроительных предприятий не располагает проектами, технологиями и опытом строительства таких судов. Более того, в России нет ни одной верфи, способной строить крупнотоннажные суда. Прорывом в данном направлении может стать приобретение группой российских инвесторов части активов компании Aker Yards, распологающей технологиями строительства LNG-танкеров, в том числе ледового класса, а также верфями в Германии и на Украине, способными строить крупнотоннажные суда.

Гранд Елена

Al Gattara (тип Q-Flex)

Mozah (тип Q-Max)

Год постройки

Вместимость (брутто регистровых тонн)

Ширина (м)

Высота борта (м)

Осадка (м)

Объем танков (куб. м)

Тип танков

сферические

мембранные

мембранные

Кол-во танков

Двигательная установка

паротурбинная

дизельная

Специально для транспортировки сжиженного природного газа (СПГ), например, метана, бутана и пропана, в танках или резервуарах используют газовозы суда, которые бывают в виде рефрижераторов, полурефрижераторов или под давлением.

Газовозы: общие сведения

В 1945 году развитие технологий позволило построить первое судно для транспортировки сжиженного природного газа под названием «Marlin Hitch», которое было оборудовано алюминиевыми танками с внешней теплоизоляцией из бальсы. Первый рейс был из США в Великобританию с грузом на 5 тысяч кубических метров груза. Позже его переименовали в «Methane Pioneer». В свое время оно являлось самым крупным в мире.

Суда газовозы используют холодильные установки для охлаждения газов. На специальных регазификационных терминалах происходит разгрузка.

Строительство танкеров для перевозки сжиженного природного газа происходит на платформах японских и корейских верфи, такими как Daewoo, Kawasaki, Mitsui, Samsung, Hyundai, Mitsubishi. Корейские судостроители
изготовили более двух третей газовозов на планете. Грузоподъемность современных судов серий Q-Max и Q-Flex составляет до 210-266 тыс. куб. м СПГ.

Востребованность газовозов обоснована тем, что природный газ является одним из основных источников топливной энергетики, используется в металлургической и химической промышленности, а также для коммунально-бытовых целей.

Перевозка газа по морю довольно дорогостоящий способ, но она необходима, если прокладка труб на суше не возможна и место добычи газа и его потребитель разделены морями или океанами. Несмотря на эти трудности,
современные газовозы полностью справляются с этой задачей.

Газовозы суда в зависимости от типа перевозимых веществ можно поделить на доставку:

  • газообразных химических продуктов;
  • природного газа;
  • попутного газа.

Такое распределение не только теория, а необходимость, ведь газ имеет различные физико-химические свойства и свои особенности. Газ перевозят отдельно от нефти, ведь это может быть взрывоопасно.

Существуют различные типы танкеров, например, с прямоугольными самонесущими танками, со сферическими танками и с мембранными двух типов. Единого мнения о том, какое судно лучшее на данный момент нет.

С каждым днем создаются все новые и новые суда. Это связано с ростом потребления газа и увеличением объема его транспортировки по воде, а также наличием специализированных портов погрузки. Современные танкеры обогнали по размерам танкеры 50-х годов, и становятся настоящими гигантами.

Самый большой в мире газовоз

Стало известно о завершении строительства одного из крупнейших в мире танкеров для добычи и перевозки природного газа. Это детище энергетической компании Royal Dutch Shell.

Судно получило имя «Прелюдия». Его длина – 488 метров. По завершению строительства плавучий гигант будет плавать в открытом море у побережья Западной Австралии.

Конструкция газовоза позволяет добывать СПГ при любых погодных условиях и способен выдерживать тропические циклоны пятой категории. Плавучий комплекс разработан для газодобычи в открытом море и непосредственной передачи на судна покупателей.

Ожидаемое начало разработки первых крупных месторождений с помощью «Прелюдий» назначено на 2017 год.

Современные газовозы позволяют добывать газ, как на крупных, так и удаленных небольших месторождениях. Конструкторы танкеров постоянно работают над тем, чтоб снизить расходы на дизельное топливо и уменьшением
выбросов вредных веществ в атмосферу.

International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code)

MARPOL,SOLAS.???

2.Классификация и конструктивные особенности судов-газовозов.

Газовоз - однопалубное судно с кормовым расположением МО, корпус которого разделен поперечными и продольными переборками (для перевозки сжиженных газов).

Классификация газовозов:

1. По методам транспортировки:

    Полностью герметичные газовозы (напорные). В основном малые газовозы для перевозки пропана, бутана и аммиака при температуре окружающей среды и давлении насыщения перевозимого газа.

    Полностью рефрижераторные газовозы LPG. Ими перевозятся сжиженный нефтяной газ при температуре минус пятьдесят пять иLNG. на которых перевозят сжиженный природный газ при температуре равной минус сто шестьдесят градусов.

    Полурефрижераторный газовз

    Полугерметичный газовоз. Перевозится газ в сжиженном состоянии, частично за счет охлаждения и давления. Газ перевозится в теплоизолированных танках, ограниченных по давлению, температуре и плотности газа, что позволяет перевозить широкий спектр газов и химических веществ.

    Изолированные газовозы большого водоизмещения. Газ поступает в охлажденном сжиженном состоянии. Во время транспортировки газ частично испаряется и используется в качестве топлива.

2. По степени опасности: Классификация в соответствии с IGCCode.

    1G. Для перевозки хлора, бромистого метила, диоксида серы и др. газов, указанных в главеXIXIGCCodeс максимальными предохранительными мерами при наибольшей опаснсоти для окружающей среды.

    2G. Судно для перевозки грузов, указанных в главеXIXIGCCode, которые требуют значительных предохранительных мер, для предотвращения утечки газа.

    2PG. Общий тип газовозов длиной до 150 метров, перевозящие груз, указанный в главеXIX, который требует предохранительных мер для танков, давление не менее 7 бар и для грузовой системы температуру не более минус 55 градусов Цельсия.

3. По типам перевозимых грузов.

    Газовозы для перевозки сжиженных нефтяных газов или аммиака под высоким давлением в малом каботаже. Грузовместимость до 1"000 м 3 . На них установлены два цилиндрических танка.

    Газовозы для перевозки газов с теплоизолированными танками и системами повторного сжижения паров газов. Грузовместимость до 12"000 м 3 . Имеет от 4 до 6 танков попарно.

    Газовозы грузовместимостью от 1"000 до 12"000 м 3 для перевозки этилена, который перевозится при атмосферном давлении и охлажденным до температуры равной -104*С.

    Газовозы грузовместимостбю от 5"000 до 100"000 м 3 для перевозки сжиженных нефтяных газов при атмосферном давлении иt=-55*c.

    Газовозы грузовместимостью от 40"000 до 130"000 м 3 для перевозки сжиженных природных газов при атмосферном давлении иt=-163*c.

Газовозы некоторых типов весьма схожи с танкерами конструкцией корпуса. Отличительными особенностями являются высокий надводный борт и наличие в трюмном пространстве специальных резервуаров – грузовых танков, изготовляемых из хладостойкого материала с мощной наружной изоляцией. Тепловая изоляция грузовых танков позволяет снизить потери груза, вызванные испарением, что повышает безопасность судна.

При изготовлении оболочек грузовых танков газовозов обычно используют довольно дорогостоящие сплавы, такие как инвар (сплав железа с 36% никеля), никелевую сталь (9% никеля), хромоникелевую сталь (9% никеля, 18% хрома) либо алюминиевые сплавы. Конструктивно грузовые танки подразделяются на несколько типов: встроенные, вкладные, мембранные, полумембранные и грузовые танки с внутренней изоляцией.

Встроенные грузовые танки являются неотъемлемой частью корпусных конструкций газовоза. Сжиженные газы в таких танках, как правило, перевозятся при температуре не ниже – 10 ° С.

Вкладные грузовые танки - это автономные конструкции, которые опираются на корпус посредством опор и фундаментов.

Мембранные танки формируются из листового или гофрированного инвара, толщина которого достигает иногда 0,7 мм, а изоляция, на которую опираются мембраны, выполняется из вспученного перлита, помещенного в фанерные ящики (блоки). Число таких блоков на судне грузовместимостью около 135 тыс. куб.м. может достигать до 100 тыс. штук. Отдельные листы инвара соединяются контактной сваркой.

Полумембранные грузовые танки имеют форму параллелепипеда со скругленными углами и выполнены из алюминиевых безнаборных листовых конструкций. Такие танки опираются на корпусные конструкции только скругленными углами, за счет чего компенсируются и термические деформации.

Среди вкладных грузовых танков широко распространены сферические танки. Их диаметр достигает 37-44 м, поэтому они почти наполовину своего диаметра выступают над уровнем верхней палубы. Выполняют их безнаборными из алюминиевых сплавов. Толщина листов колеблется от 38 до 72 мм, экваториальный пояс достигает 195 мм. Такие танки имеют наружную изоляцию из полиуретана толщиной около 200 мм. Внешняя поверхность танков покрывается алюминиевой фольгой, а надпалубную часть закрывают стальными кожухами. Каждый танк сферического типа, масса которого в сборе достигает 680-700 т, опирается в экваториальной части на цилиндрический фундамент, установленный на втором дне.

Вкладные танки на газовозах также могут быть трубообразными, цилиндрическими, цилиндро-коническими, а также других форм, которые хорошо приспособлены к восприятию внутреннего давления. Если давление газа при его транспортировке незначительно, то применяют танки призматического вида.

 
Статьи по теме:
Продажа вертолетов Bell Радиоуправляемые вертолеты – моделей много, принцип выбора один
США, Япония, Тайвань, Германия и Италия Тип: вертолет общего назначения и непосредственной поддержки Вместимость : пилот и до 14 пассажиров (модификация UH-1H) Семейство вертолетов Bell UH-1, построенное со времени окончания Второй мировой войны в больше
​Путешествие в страну Дорожных знаков
Главным документом, регламентирующим правила поведения на дороге, является ПДД. Что касаемо детей, то значимым знаком является «Осторожно Дети» 1.23 по ПДД. Соблюдение правил очень важно, поскольку, в противном случае, могут возникнуть непоправимые послед
Транспортные средства: классификация
Таблица 4 Классификационный признак Специальный Специализированный По назначению Пожарный Медицинской помощи Охранный Автокраны Уборочный Самосвалы с навесным оборудованием Фургоны с навесным оборудованием Цистерны Контейнеровозы Мусоровозы
Демонтаж «фартука» приборной панели
Многие автолюбители сталкивались с тем, что на ВАЗ-2114 гасла одна из ламп ближнего света. Почему это случается? Ответ достаточно простой – лампочка перегорела и её необходимо заменить. Многие автомобилисты зададутся вопросом – как это сделать? Достаточно