Генератор прямоугольных импульсов с регулируемой частотой на uA741. Генератор импульсов своими руками. Генератор высоковольтных импульсов Как сделать генератор прямоугольных импульсов

5.6 Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц.

На рис. 116 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки SB1. На логических элементахDD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки SB1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 117 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду.

Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых


эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

На рис. 118 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада.

Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15...17 В и токе 20...50 мА.

В генераторе импульсов, схема которого приведена на рис. 119, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 - длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1...2 мкФ. Сопротивления резисторов R2, R3 - 10...15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303





При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора.

Схема приведена на рис. 120. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют галетным переключателем SA1. Диапазон частот, формируемых генератором, составляет 1...10 000 Гц.

На рис. 121 представлена схема генератора импульсов с регулируемой скважностью. Скважность, т. е. отношение периода следования импульсов к длительности напряжения высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рис. 122, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 форми-



руются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение.

Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов.

Иногда возникает необходимость в построении генератора, который формирует число импульсов, соответствующее номеру нажатой кнопки.

Принципиальная схема устройства (первый вариант), реализующего такую возможность, приведена на рис. 123. Функционально оно включает генератор импульсов, счетчик и дешифратор. Генератор прямоугольных импульсов собран на логических элементах DD1.3 и DD1.4. Частота следования импульсов около 10 Гц. С выхода генератора импульсы поступают на вход двоично-десятичного счетчика, выполненного на микросхеме DD2. Четыре выхода счетчика соединены со входами микросхемы DD3, представляющей собой дешифратор на 4 входа и 16 выходов.

При подаче питающего напряжения на правых (по схеме) контактах всех пятнадцати кнопок SB I-SB 15 будет напряжение низкого уровня, обеспечиваемое наличием низкоомного резистора R5. Это напряжение подается на вход ждущего мультивибратора, выполненного на элементах DD1.1, DD1.2 и конденсаторе С1, и



гасящего импульсы дребезга контактов кнопок. На выходе ждущего мультивибратора - напряжение низкого уровня, поэтому генератор импульсов не работает. При нажатии одной из кнопок конденсатор С3 мгновенно заряжается через диод VD1 до напряжения высокого уровня, в результате чего на выводах 2 и 3 счетчика DD2 появляется напряжение низкого уровня, устанавливающее его в рабочее состояние. Одновременно через замкнутый контакт нажатой кнопки напряжение высокого уровня подается на вход ждущего мультивибратора, и импульсы генератора поступают на вход счетчика. При этом на выходах дешифратора последовательно появляется напряжение низкого уровня. Как только оно появится на выходе, с которым соединен контакт нажатой кнопки, подача импульсов на вход счетчика прекратится. С вывода 11 элемента DD1.4 будет снято число импульсов, соответствующее номеру нажатой кнопки. Если продолжать удерживать кнопку нажатой, то через некоторое время конденсатор СЗ разрядится через резистор R2, счетчик DD2 установится в нулевое состояние и генератор выдаст новую серию импульсов. До окончания серии импульсов кнопку отпускать нельзя.

В устройстве использованы резисторы МЛТ-0,25; оксидные конденсаторы - К50-6. Транзисторы VT1, VT2 могут быть серий КТ312, КТ315, КТ503, КТ201, диод VD1 - серий Д7, Д9, Д311. Кнопки SB 1 -SB 15 - типов П2К, KM 1-1 и др.

Настройка числоимпульсного генератора заключается в установке подбором резистора R1 и конденсатора С2 требуемой частоты следования импульсов генератора, которая может быть в пределах от единиц герц до десятков килогерц. При частоте выше 100 Гц для выдачи полной серии импульсов требуется время не более 0,15 с, поэтому кнопку можно не удерживать пальцем - короткого нажатия ее вполне достаточно для формирования пачки импульсов.

На рис. 124 представлена схема еще одного числоимпульсного генератора (второй вариант), по принципу работы аналогичного описанному выше. Благодаря применению микросхем серии К176 схема генератора упростилась. Генератор формирует от 1 до 9 импульсов.

В двух описанных выше вариантах числоимпульсных генераторов необходимо удерживать кнопку нажатой до окончания серии импульсов, в противном случае на выход поступит неполная пачка импульсов. Это является недостатком. На рис. 125 приведена схема третьего варианта числоимпульсного генератора, в котором импульсы начинают вырабатываться после отпускания кнопки.

На микросхемах DD1, DD2 и диодах VD1-VD3 собран шифратор, преобразующий десятичное число в двоичный код. Сигналы с выходов шифратора подаются на входы D1, D2, D4, D8 микросхемы



DD4 (реверсивный счетчик) и на входы логического элемента 4ИЛИ-HE(DD3.1).

Рассмотрим работу генератора при нажатии кнопки SB3. Когда кнопка нажата, на выходах логических элементов DD1.1 и DD1.2 установится напряжение высокого уровня, а на выходах DD2.1, DD2.2 сохранится напряжение низкого уровня. На выходе логического элемента DD3.1 появится напряжение низкого уровня, которое через дифференцирующую цепь C1R11 поступит на вход С реверсивного счетчика DD4 и установит его в состояние 1100. При этом на выходе логического элемента DD3.2 установится напряжение низкого уровня, которое инвертируется логическим элементом DD5.1 и подготавливает к работе генератор на логических элементах DD5.2-DD5.4. После отпускания кнопки SB3 на выходе элемента DD3.1 появится напряжение высокого уровня, которое будет подано на выход 12 микросхемы DD5; начнет работать генератор. Импульсы с его выхода (вывод 11 микросхемы DD5) поступают на вход -1 реверсивного счетчика. При этом происходит уменьшение числа, записанного в счетчике, и на выходах 1, 2, 4, 8 счетчика последовательно появляются комбинации логических уровней 0100, 1000, 0000. При установке счетчика в состояние 0000 на выходе логического элемента DD3.2 установится напряжение высокого уровня, и генератор остановится. На выход поступит три импульса.

Частота импульсов генератора определяется элементами С2 и R 12 и может изменяться в широких пределах (от единиц герц до сотен килогерц).


В описанных здесь генераторах импульсов можно использовать резисторы МЛТ-0,25, конденсаторы К50-6, КМ-6. Транзисторы КТ315Б можно заменить транзисторами из серий КТ312, КТ315, КТ316, КТ503. Диоды - любые из серий Д7, Д9, Д311. Кнопки - типов П2К, КМ1 и др. Микросхемы могут быть серий К 133, К 134, К 136, К158, КР531, К555 для первого и третьего вариантов; К561 - для второго варианта.

Генераторы прямоугольных импульсов применяются во многих радиолюбительских устройствах: электронных счетчиках, игровых автоматах, ну и наиболее широкок применяют они получили при настройке цифровой техники. Предлагаем вашему вниманию подборку схем и конструкций генераторов прямоугольных импульсов

Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной - сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними.

Основной и широко распространенный вид релаксационного генератора - симметричный мультивибратор на двух транзисторах, схема которого показана на рисунке ниже. В нем два стандартных усилительных каскада на транзисторах VT1 и VT2 соединены в последовательную цепочку, то есть выход одного каскада соединен со входом другого через разделительные конденсаторы С1 и С2. Они же определяют и частоту генерируемых колебаний F, точнее, их период Т. Напомню, что период и частота связаны простым соотношением

Если схема симметрична и номиналы деталей в обоих каскадах одинаковы, то и выходное напряжение имеет форму меандра.

Работает генератор так: сразу после включения, пока конденсаторы С1 и С2 не заряжены, транзисторы оказываются в «линейном» усилительном режиме, когда резисторами R1 и R2 задается некоторый малый ток базы, он определяет в Вст раз больший ток коллектора, и напряжение на коллекторах несколько меньше напряжения источника питания за счет падения напряжения на резисторах нагрузки R3 и R4. При этом малейшие изменения коллекторного напряжения (хотя бы из-за тепловых флуктуаций) одного транзистора передаются через конденсаторы С1 и С2 в цепь базы другого.

Предположим, что коллекторное напряжение VT1 чуть-чуть понизилось. Это изменение передается через конденсатор С2 в цепь базы VT2 и немного его запирает. Коллекторное напряжение VT2 возрастает, и это изменение передается конденсатором С1 на базу VT1, он отпирается, его коллекторный ток возрастает, а коллекторное напряжение понижается еще больше. Процесс происходит лавинообразно и очень быстро.

В результате транзистор VT1 оказывается полностью открыт, его коллекторное напряжение будет не более 0,05...0,1 В, a VT2 - полностью заперт, и его коллекторное напряжение равно напряжению питания. Теперь надо ждать, пока перезарядятся конденсаторы С1 и С2 и транзистор VT2 приоткроется током, текущим через резистор смещения R2. Лавинообразный процесс пойдет в обратном направлении и приведет к полному открыванию транзистора VT2 и полному запиранию VT1. Теперь нужно ждать еще полпериода, нужные для перезарядки конденсаторов.

Время перезарядки определяется напряжением питания, током через резисторы Rl, R2 и емкостью конденсаторов Cl, С2. При этом говорят о «постоянной времени» цепочек Rl, С1 и R2, С2, примерно соответствующей периоду колебаний. Действительно, произведение сопротивления в омах на емкость в фарадах дает время в секундах. Для номиналов, указанных на схеме рисунка 1 (360 кОм и 4700 пФ), постоянная времени получается около 1,7 миллисекунды, что говорит о том, что частота мультивибратора будет лежать в звуковом диапазоне порядка сотен герц. Частота повышается при увеличении напряжения питания и уменьшении номиналов Rl, С1 и R2, С2.

Описанный генератор весьма неприхотлив: в нем можно использовать практически любые транзисторы и изменять номиналы элементов в широких пределах. К его выходам можно подключать высокоомные телефоны, чтобы услышать звуковые колебания, или даже громкоговоритель - динамическую головку с понижающим трансформатором, например абонентский трансляционный громкоговоритель. Так можно организовать, например, звуковой генератор для изучения азбуки Морзе. Телеграфный ключ ставят в цепи питания, последовательно с батареей.

Поскольку два противофазных выхода мультивибратора в радиолюбительской практике нужны редко, автор задался целью сконструировать более простой и экономичный генератор, содержащий меньше элементов. То, что получилось, показано на следующем рисунке. Здесь использованы два транзистора с разными типами проводимости - п-р-п и р-n-р. Открываются они одновременно, коллекторный ток первого транзистора служит током базы второго.

Вместе транзисторы образуют также двухкаскадный усилитель, охваченный ПОС через цепочку R2,C1. Когда транзисторы запираются, напряжение на коллекторе VT2 (выход 1 В) падает до нуля, это падение передается через цепочку ПОС на базу VT1 и полностью его запирает. Когда конденсатор С1 зарядится до примерно 0,5 В на левой обкладке, транзистор VT1 приоткроется, через него потечет ток, вызывая еще больший ток транзистора VT2; напряжение на выходе начнет расти. Это возрастание передается на базу VT1, вызывая еще большее его открывание. Происходит вышеописанный лавинообразный процесс, полностью отпирающий оба транзистора. Через некоторое время, нужное для перезарядки С1, транзистор VT1 призакроется, поскольку ток через резистор большого номинала R1 недостаточен для его полного открывания, и лавинообразный процесс разовьется в обратном направлении.

Скважность генерируемых импульсов, то есть соотношение длительностей импульса и паузы, регулируется подбором резисторов R1 и R2, а частота колебаний - подбором емкости С1. Устойчивой генерации при выбранном напряжении питания добиваются подбором резистора R5. Им же в некоторых пределах можно регулировать выходное напряжение. Так, например, при указанных на схеме номиналах и напряжении питания 2,5 В (два дисковых щелочных аккумулятора) частота генерации составила 1 кГц, а выходное напряжение - ровно 1 В. Потребляемый от батареи ток получился около 0,2 мА, что говорит об очень высокой экономичности генератора.

Нагрузка генератора R3, R4 выполнена в виде делителя на 10, чтобы можно было снимать и меньшее напряжение сигнала, в данном случае 0,1 В. Еще меньшее напряжение (регулируемое) снимается с движка переменного резистора R4. Эта регулировка может оказаться полезной, если нужно определить или сравнить чувствительность телефонов, проверить высокочувствительный УНЧ, подав малый сигнал на его вход, и так далее. Если же таких задач не ставится, резистор R4 можно заменить постоянным или сделать еще одно звено делителя (0,01 В), добавив снизу еще резистор номиналом 27 Ом.

Сигнал прямоугольной формы с крутыми фронтами содержит широкий спектр частот - кроме основной частоты F, еще и ее нечетные гармоники 3F, 5F, 7F и так далее, вплоть до радиочастотного диапазона. Поэтому генератором можно проверять не только звуковую аппаратуру, но и радиоприемники. Конечно, амплитуда гармоник убывает с ростом их частоты, но достаточно чувствительный приемник позволяет прослушивать их во всем диапазоне длинных и средних волн.

Представляет собой кольцо из двух инверторов. Функции первого из них выполняет транзистор VT2, на входе которого включен эмиттерный повторитель на транзисторе VT1. Это сделано для повышения входного сопротивления первого инвертора, благодаря чему появляется возможность генерации низких частот при относительно небольшой емкости конденсатора С7. На выходе генератора включен элемент DD1.2, выполняющий роль буферного элемента, улучшающего согласование выхода генератора с испытуемой цепью.

Последовательно с времязадающим конденсатором (нужная величина емкости подбирается переключателем SA1) включен резистор R1, изменением сопротивления которого регулируется выходная частота генератора. Для регулировки скважности выходного сигнала (отношения периода импульса к его длительности) в схему введен резистор R2.

Устройство генерирует импульсы положительной полярности частотой 0,1 Гц...1 МГц и скважностью 2... 500. Частотный диапазон генератора разбит на 7 поддиапазонов: 0,1...1, 1 .10, 10...100, 100...1000 Гц и 1...10, 10...100, 100...1000 кГц, которые устанавливаются переключателем SA1.

В схеме можно использовать кремниевые маломощные транзисторы с коэффициентом усиления не менее 50 (например, КТ312, КТ342 и т. п.), интегральные схемы К155ЛНЗ, К155ЛН5.

Генератор прямоугольных импульсов на микроконтроллере на этой схеме, будет отличным пополнением в вашу домашнюю измерительную лабораторию.

Особенностью этой схемы генератора является фиксированное число частот, а точнее 31. И его можно применять в различных цифровых схемотехнических решениях, где требуется изменять частоты генератора автоматически или с помощью пятью переключателей.

Выбора той или иной частоты осуществляется с помощью посылки пятиразрядного двоичного кода на входе микроконтроллера.

Схема собрана на одном из самом распространенном микроконтроллере Attiny2313. Делитель частоты с регулируемым коэффициентом деления построен программно, используя частоту кварцевого генератора в роли опорной.

Генераторы импульсов предназначены для получения импульсов определенной формы и длительности. Они используются во многих схемах и устройствах. А также их используют в измерительной техники для наладки и ремонта различных цифровых устройств. Прямоугольные импульсы отлично подойдут для проверки работоспособности цифровых схем, а треугольной формы могут пригодиться для свип-генераторов или генераторов качающейся частоты.

Генератор формирует одиночный импульс прямоугольной формы по нажатию на кнопку. Схема собрана на логических элементах в основе которой обычный RS-триггер, благодаря ему также исключается возможность проникновения импульсов дребезга контактов кнопки на счетчик.

В положении контактов кнопки, как показано на схеме, на первом выходе будет присутствовать напряжение высокого уровня, а на втором выходе низкого уровня или логического нуля при нажатой кнопке состояние триггера поменяется на противоположное. Этот генератор отлично подойдет для проверки работы различных счетчиков


В этой схемы формируется одиночный импульс, длительность которого не зависит от длительности входного импульса. Используется такой генератор в самых разнообразных вариантах: для имитации входных сигналов цифровых устройств, при проверке работоспособности схем на основе цифровых микросхем, необходимости подачи на какое-то тестируемое устройство определенного числа импульсов с визуальным контролем процессов и т. д

Как только включают питание схемы конденсатор С1 начинает заряжается и реле срабатывает, размыкая своими фронтовыми контактами цепь источника питания, но реле отключится не сразу, а с задержкой, так как через его обмотку будет протекать ток разряда конденсатора С1. Когда тыловые контакты реле опять замкнутся, начнется новый цикл. Частота переключении электромагнитного реле зависит от емкости конденсатора С1 и резистора R1.

Использовать можно почти любое реле, я взял . Такой генератор можно использовать, например, для переключения елочных гирлянд и других эффектов. Минусом данной схемы является применение конденсатора большой емкости.

Другая схема генератора на реле, с принципом работы аналогичной предыдущей схеме, но в отличии от нее, частота следования равна 1 Гц при меньшей емкости конденсатора. В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.

В генераторе импульсов, на рисунке А, применены три логических элемента И-НЕ и униполярный транзистор VT1. В зависимости от значений конденсатора С1 и резисторов R2 и R3 на выходе 8 генерируются импульсы с частотой 0,1 - до 1 МГц. Такой огромный диапазон объясняется применению в схеме полевого транзистора, что дало возможность использовать мегаомные резисторы R2 и R3. С помощью их можно менять также менять скважность импульсов: резистором R2 задается длительность высокого уровня, а R3 - длительность напряжения низкого уровня. VT1 можно взять любой из серий КП302, КП303. - К155ЛА3.

Если использовать вместо К155ЛА3 микросхемы КМОП например К561ЛН2 можно сделать широкодиапазонный генератор импульсов без использования в схеме полевого транзистора. Схема этого генератора показана на рисунке В. Для расширения количества генерируемых частот емкость конденсатора времязадающей цепи выбирается переключателем S1. Диапазон частот этого генератора 1ГЦ до 10 кГц.

На последнем рисунке рассмотрена схема генератора импульсов в которой заложена возможность регулировки скважности. Для тех кто забыл, напомним. Скважность импульсов это отношение периода следования (Т) к длительности (t):

Скважность на выходе схемы можно задать от 1 до нескольких тысяч, с помощью резистора R1. Транзистор работающий в ключевом режиме предназначен для усиления импульсов по мощности

Если есть необходимость высокостабильного генератора импульсов, то необходимо использовать кварц на соответствующую частоту.

Схема генератора показанная на рисунке способна вырабатывать импульсы прямоугольной и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3 цифровой микросхемы К561ЛН2. Резистор R2 в паре с конденсатором С2 образуют дифференцирующую цепь, которая на выходе DD1.5 генерирует короткие импульсы длительностью 1 мкс. На полевом транзисторе и резисторе R4 собран регулируемый стабилизатор тока. С его выхода течет ток заряжающий конденсатор С3 и напряжение на нем линейно увеличивается. В момент поступления короткого положительного импульса транзистор VT1 открывается, а конденсатор СЗ разряжается. Тем самым формируя пилообразное напряжение на его обкладках. Переменным резистором можно регулировать ток заряда конденсатора и крутизну импульса пилообразного напряжения, а также его амплитуду.

Вариант схемы генератора на двух операционных усилителях

Схема построена с использованием двух ОУ типа LM741. Первый ОУ используется для генерации прямоугольной формы, а второй генерирует треугольную. Схема генератора построена следующим образом:


В первом LM741 на инвертирующий вход с выхода усилителя подключена обратная связь (ОС) выполненная на резисторе R1 и конденсаторе C2, а на неинвертирующий вход также идет ОС, но уже через делитель напряжения, на базе резисторов R2 и R5. Выходной первого ОУ непосредственно связан с инвертирующим входом второго LM741 через сопротивление R4. Этот второй ОУ вместе с R4 и C1 образуют схему интегратора. Его неинвертирующий вход заземлен. На оба ОУ подаются напряжения питания +Vcc и –Vee, как обычно на седьмой и четвертый выводы.

Работает схема следующим образом. Предположим, что первоначально на выходе U1 имеется +Vcc. Тогда емкость С2 начинает заряжаться через резистор R1. В определенный момент времени напряжение на С2 превысит уровень на неинвертирующем входе, что расчитывается по формуле ниже:

V 1 = (R 2 / (R 2 +R 5))× V o = (10 / 20)× V o = 0.5× V o

Выходной сигнал V 1 станет –Vee. Так, конденсатор начинает разряжаться через резистор R1. Когда напряжение на емкости станет меньше напряжения, определяемого формулой, выходной сигнал снова будет + Vcc. Таким образом, цикл повторяется, и благодаря этому генерируются импульсы прямоугольной формы с периодом времени, определяемым RC-цепочкой, состоящей из сопротивления R1 и конденсатора C2. Эти образования прямоугольной формы также являются входными сигналами для схемы интегратора, который преобразует их в треугольную форму. Когда выход ОУ U1 равен +Vcc, емкость С1 заряжается до максимального уровня и дает положительный, восходящий склон треугольника на выходе ОУ U2. И, соответственно, если на выходе первого ОУ имеется –Vee, то будет формироваться отрицательный, нисходящий склон. Т.е, мы получаем треугольную волну на выходе второго ОУ.

Генератор импульсов на первой схеме построен на микросхеме TL494 отлично подходит для наладки любых электронных схем. Особенность этой схемы заключается в том, что амплитуда выходных импульсов может быть равна напряжению питания схемы, а микросхема способна работать вплоть до 41 В, ведь не просто так ее можно найти в блоках питания персональных компьютеров.


Разводку печатной платы вы можете скачать по ссылке выше.

Частоту следования импульсов можно изменят переключателем S2 и переменным резистором RV1, для регулировки скважности используется резистор RV2. Переключатель SA1 предназначен для изменения режимы работы генератора с синфазного на противофазный. Резистор R3 должен перекрывать диапазон частот, а диапазон регулировки скважности регулируется подбором R1, R2

Конденсаторы С1-4 от 1000 пФ до 10 мкФ. Транзисторы любые высокочастотные КТ972

Подборка схем и конструкций генераторов прямоугольных импульсов. Амплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной - сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними

Формирует мощные короткие одиночные импульсы, которые устанавливают на входе или выходе любого цифрового элемента логический уровень, противоположный имеющемуся. Длительность импульса выбрана такой, чтобы не вывести из строя элемент, выход которого подключен к испытуемому входу. Это дает возможность не нарушать электрической связи испытуемого элемента с остальными.

В электронной технике широко применяются устройства, форма выходного напряжения которых резко отличается от синусоидальной. Такие колебания называют релаксационными, мультивибратор представляет собой разновидность одного из релаксационных генераторов. Мультивибратор (от латинских слов multim - много и vibro - колебание) - релаксационный генератор импульсов прямоугольной формы, выполненный в виде усилительного устройства с цепью положительной обратной связи (ПОС).

Генераторы импульсных сигналов могут работать в одном из трех режимов: автоколебательном, ждущем или синхронизации.

В автоколебательном режиме генераторы непрерывно формируют импульсные сигналы без внешнего воздействия. В ждущем режиме генераторы формируют импульсный сигнал по приходу внешнего (запускающего) импульса. В режиме синхронизации генераторы вырабатывают импульсы напряжения, частота которых равна или кратна частоте синхронизирующего сигнала.

Сущность работы мультивибратора - переключение энергии конденсатора C с заряда на разряд, от источника питания к резистору R . Это переключение осуществляется с помощью электронных ключей.

Мультивибратор можно построить на базе биполярных и полевых транзисторов, операционных усилителей, таймеров, выполненных в виде интегральных микросхем, потенциальных логических элементов или специализированных интегральных микросхем. Последний вариант получает все большее распространение.

Генераторы импульсов на операционных усилителях. На рис. 16.7 показан классический релаксационный R С -генератор. Работает он таким образом: допустим, что когда впервые прикладывается напряжение, выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет - неважно). Конденсатор начинает заряжаться до напряжения U ВХ ВЫКЛ спостоянной времени, равной τ = RC .Когда напряжение конденсатора достигнет напряжения U ВХ ВЫКЛ R 1 / (R 1 + R 2 ), ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта) и конденсатор начинает разряжаться до U ВХ ВКЛ R 1 /(R 1 + R 2 ), с той же самой постоянной времени. Цикл повторяется с не зависящим от напряжения питания периодом (рис. 16.8): T = В случае использования вместо резистора R двух разных резисторов и диодов можно построить несимметричный мультивибратор (рис.16.9), у которого длительности положительного и отрицательного импульсов не совпадают.

Разная длительность положительного и отрицательного импульсов обеспечивается различными постоянными времени перезаряда емкостей τ 1 и τ 2 : τ 1 = R 3 C; и τ 2 =R 4 C. (16.8)

Рис. 16.7. Генератор прямоугольных импульсов на ОУ

Рис.16.8. Временные диаграммы работы генератора

Функциональные генераторы , которые одновременно вырабатывают колебания различных видов: прямоугольные, треугольные, синусоидальные, можно реализовать на ОУ. Генерация переменного напряжения треугольной формы осуществляется по простой схеме с помощью интегратора и триггера Шмитта. В свою очередь, используя простой блок формирования синусоидальной функции (например, фильтр нижних частот) из треугольного напряжения можно получить синусоидальное. Структурная схема такого генератора изображена на рисунок 16.10.


Рис. 16.11. Принципиальная схема функционального генератора

Амплитуда треугольного напряжения зависит только от установки уровня срабатывания триггера Шмитта и составляет

U D = U макс (16.9)

где Uмакс- граница насыщения операционного усилителя DA1. Период колебаний равен удвоенному времени, которое необходимо интегратору, чтобы его выходное напряжение изменялось от до. Отсюда следует: Т = 4RCТаким образом, частота формируемого напряжения не зависит от уровня границы насыщения Uмакс операционного усилителя.

Одновибратор - это мультивибратор в ждущем режиме. Исходя из функциональных признаков, одновибратору часто присваивают и другие названия: спусковая система, заторможенный мультивибратор, однотактный релаксатор и др. Однако независимо от названия одновибратор представляет собой устройство с положительной обратной связью, имеющее одно устойчивое и одно временно-устойчивое состояние, формирующие одиночный прямоугольный импульс.

Формирование импульса прямоугольной формы осуществляется одновибратором после поступления запускающего импульса, который переводит одновибратор из устойчивого состояния во временно устойчивое. Момент окончания временно устойчивого состояния определяется времязадающей цепочкой. Изменяя постоянную времени цепочки (плавно или скачком), можно регулировать длительность выходных импульсов в широких пределах. Поэтому одновибраторы широко применяются для формирования прямоугольных импульсов заданной длительности и амплитуды и для задержки импульсов на заданное время.

Одновибратор может быть получен из автоколебательного мультивибратора, если его принудительно запереть в одном из временно устойчивых состояний, превратив его в устойчивое (рис. 16.12).

В схему введены диод VD2, осуществляющий ждущий режим и цепь запуска на элементах С1, R3, VD1. Схема имеет одно устойчивое состояние, когда напряжение на выходе равно отрицательному напряжению насыщения ОУ U- .

В исходном состоянии (на выходе U-) диод VD2 открыт, напряжение на инвертирующем входе UИ примерно равно нулю, а напряжение на неинвертирующем входеUН = U- R2 / (R1 + R2), UН - UИ < 0, UВЫХ = U- .Диод VD1, подключенный к неинвертирующему входу, заперт. В момент времени t1 (рис. 16.13) входной сигнал открывает этот диод, на неинвертирующий вход подается положительный сигнал, (на инвертирующем входе остается нулевой сигнал), на выходе ОУ появляется положительной напряжение. После этого начинается заряд конденсатора C. Когда напряжение на нем становится больше напряжения UН = U+ R2 / (R1 + R2), дифференциальный сигнал UН - UИ становится отрицательным и ОУ возвращается в исходное устойчивое состояние. Очередной запускающий импульс можно подавать только после момента времени t3.

Рис.16.12. Принципиальная схема одновибратора

Рис.16.13. Временные диаграммы работы одновибратора

Прямоугольные импульсы, имеющие широкий диапазон частот и скважности могут быть получены с помощью операционного усилителя uA741.

Схема такого генератора прямоугольных импульсов приведена ниже.

На схеме конденсатор С1 и R1 образует время задающую цепь. Резисторы R2 и R3 образуют делитель напряжения, который подает фиксированную часть выходного напряжения на не инвертирующий вывод ОУ в качестве опорного напряжения.

Генератор прямоугольных импульсов с регулируемой частотой. Описание работы

Первоначально напряжение на конденсаторе С1 будет равно нулю, а выход операционного усилителя будет высоким. В результате этого конденсатор C1 начинает заряжаться от положительного напряжения через потенциометр R1.

Когда конденсатор C1 зарядиться до уровня, при котором напряжение на инвертирующем выводе операционного усилителя станет выше напряжения на не инвертирующем, выход операционного усилителя переключиться на отрицательный.

При этом конденсатор быстро разрядиться через R1, а затем начинает заряжаться к отрицательному полюсу. Когда С1 зарядиться от отрицательного напряжения, так что напряжение на инвертирующем выводе будет более отрицательный, чем на не инвертирующем, выход усилителя переключиться на положительный.

Теперь конденсатор быстро разрядиться через R1 и начинает заряжаться от положительного полюса. Этот цикл будет повторяться бесконечно, и его результатом будет непрерывный меандр на выходе амплитудой от + Vcc и до -Vcc.

Период колебания генератора прямоугольных импульсов может быть выражен с помощью следующего уравнения:

Как правило, сопротивление R3 делают равным R2. Тогда уравнение для периода может быть упрощено:

Т = 2.1976R1C1

Частота может быть определена по формуле: F = 1 / T

Теперь немного об операционном усилителе uA741

Операционный усилитель uA741 является очень популярной микросхемой, которая может быть использована во многих схемах.

ОУ LM741 выпускается в 8 контактном пластиковом корпусе DIP, содержащий один усилитель.

Операционный усилитель uA741может применяться в различных электронных схемах, таких как: дифференциатор, интегратор, сумматор, вычитатель, дифференциальный усилитель, предусилитель, генератор частоты и т. д.

Хотя uA741, как правило, работает от двухполярного источника питания, но он так же с успехом может работать и от однополярного.

Назначение выводов uA741 показано на следующем рисунке:

Диапазон напряжения питания uA741 составляет от +/- 5 до +/- 18 вольт.

Номер контакта 1 и 5 предназначены для настройки нулевого смещения. Это может быть сделано путем подключения переменного резистора на 10K к контактам 1 и 2, а движок резистора к контакту 4.

Максимальная мощность рассеивания uA741 составляет 500 мВт.

 
Статьи по теме:
Проверка рабочей тормозной системы
Нормативы эффективности торможения рабочей и аварийной тормозных систем, соответствующие СТБ 1641-2006, приведены в таблице: Таблица. Нормативы эффективности торможения транспортных средств рабочей и аварийной тормозных систем при проверках на стендах
Транспондеры: какой выгоднее?
9 января 2018 года по некоторым маршрутам платной дороги М-11 Москва-Санкт-Петербург на участке 15-58 км, строительство и эксплуатация которого осуществляется в рамках концессионного соглашения, меняется стоимость проезда. Для легкового транспорта основны
Микросхема MC34063 схема включения
Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь н
Как своими руками сделать педаль джимми хендрикса
Всем привет! Сегодняшняя статья посвящена примочкостроительству целиком и полностью. После её прочтения, ты сможешь с закрытыми глазами левой пяткой правой ноги собрать свой первый рабочий девайс. Ну или почти.У вопроса «Что заставляет гитариста взять