Преобразователь аудиосигнала самодельный. Высококачественный USB аудио-адаптер своими руками. Какие выводы для себя я сделал по этим результатам

В последние десятилетия цифровая аудиотехника развивается стремительными темпами. Помимо появления широкого спектра цифровых усилителей, также появляются всё новые форматы цифрового аудио. Любителей качественного звука это с одной стороны радует повышением качества звучания, с другой стороны огорчает, так как из-за введения новых форматов приходится постоянно обновлять свою аудиосистему.

Спасти положение может наличие в системе отдельного цифро-аналогового преобразователя (ЦАП). Для перехода на новый формат придётся обновить только его, а порой достаточно будет обновления лишь одного его блока, например приёмника S/PDIF. Кроме того, автономный ЦАП имеет ещё одно преимущество - является универсальным блоком и позволяет подключать к вашей аудиосистеме различные цифровые источники CD / DVD-плеера, компьютер или сетевой проигрыватель.

В данной статье приводится описание схемы и конструкции ЦАП, способного работать с частотами дискретизации 32-96 кГц. Автор намеренно не реализовал поддержку стандарта 192 кГц, так как считает его малораспространённым. Основной упор в данном аппарате сделан на бескомпромиссное качество. Использованная элементная база не очень новая, но доступная. Наверняка, у многих радиолюбителей «в закромах» найдётся большинство комплектующих, что позволит без проблем повторить данную конструкцию или доработать имеющийся ЦАП до более высокого уровня.

ХАРАКТЕРИСТИКИ ЦАП

Функции и возможности:

  • коаксиальный и оптический входы,
  • работает с частотой дискретизации 32-96 кГц,
  • 2-разрядный индикатор частоты дискретизации,
  • 8-кратная передискретизация,
  • 24-битный цифровой фильтр,
  • 24-битные цифро-аналоговые преобразователи,
  • цифровой деэмфазис (коррекция предискажений),
  • переключаемые аналоговые фильтры третьего порядка (Бесселя и Баттерворта),
  • раздельное питание цифровых и аналоговых цепей.

Технические параметры:

номинальное выходное напряжение 2.1 V (RMS)
номинальное входное напряжение
коаксиального входа
0.5 V (сопротивление 75 Ω)
частотный диапазон (–3 dB) 0–fs/2 (fs=32/44.1/48 kHz)
0–42 kHz (fs=88.2/96 kHz)
граничная частота аналогового фильтра 26 kHz (Баттерворта для частот fs=32/44.1/48 kHz)
42 kHz (Бесселя для частот fs=88.2/96 kHz)
выходное сопротивление 100 Ω
отношение сигнал/шум ≥ 114 dBa
искажения+шум 0.0016% (44.1 kHz, 16-bit)
0.001% (48 kHz, 24-bit)
0.0008% (96 kHz, 24-bit, b=22 kHz)
коэффициент интермодуляционных искажений
(60 Hz/7 kHz, 0 dB)
0.0035%
разделение каналов (1 kHz) >115 dB
динамический диапазон >100 dB

Измерения проводились при следующих положениях переключателей (см. далее):

s1 s2 s3 s4
-1 off -1 on -1 on -1 off
-2 off -2 off -2 on -2 off
-3 off -3 off -3 on -3 off
-4 on -4 off -4 off -4 on
-5 on
-6 off
-7 off
-8 off

СТРУКТУРНАЯ СХЕМА

Конструкция ЦАП выполнена в виде 4-х блоков, каждый из которых собран на отдельной печатной плате:

  • блок питания ± 12 В и +5 В,
  • цифровой приёмник и драйвер дисплея,
  • 2-х разрядный дисплей,
  • цифровой фильтр, непосредственно цифро-аналоговый преобразователь и выходные аналоговые фильтры.

Блок-схема показана на рисунке:

увеличение по клику

Источник питания состоит из стабилизатора напряжения +5 В для цифровых схем (приемник и цифровой фильтр) и стабилизатора напряжения ±12 В для питания аналоговых цепей и реле. Кроме того из этих напряжений с помощью дополнительных стабилизаторов получаются напряжения ±5 В для питания микросхемы ЦАП.

На плате приёмника цифровых аудио данных размещён также драйвер дисплея, который позволяет контролировать частоту тактового сигнала. Сам дисплей состоит из двух 7-сегментных светодиодных модулей для индикации частоты дискретизации: 32 кГц, 44 кГц (в реальности 44,1 кГц), 48 кГц, 88 кГц (в реальности 88,2 кГц), или 96 кГц.

Для аппаратной конфигурации приёмника используется 4-х контактный DIP-переключатель. Образцовый тактовый сигнал формирует высокоточный кварцевый генератор с частотой 6,144МГц для определения частоты входного сигнала и системы фазовой автоподстройки частоты (ФАПЧ).

На выходе приёмника данные о частоте дискретизации и биты состояния присутствуют в смешанном виде. Для их разделения используется микросхема IC5. Выходные данные записываются в регистры микросхемы и в нормальном режиме выходные сигналы статические. Такая индикация (против динамической) требует гораздо меньшего тока и, как следствие, создает меньше помех.

Для соединения платы цифрового приёмника с платой дисплея используется 10-ти жильный плоский кабель. Соединение платы приёмника с платой ЦАП и выходных фильтров осуществляется с помощью 16-ти жильного плоского кабеля. Этим же кабелем с платы приёмника передаётся напряжение +5В для питания цифрового фильтра, а также сигнал переключения на выходной фильтр с удвоенной частотой среда, если на входе обнаружен сигнал с частотами 88,2 кГц или 96 кГц.

Сигнал «MUTE» (приглушение) формируется при отсутствии сигнала на входе приёмника или когда система ФАПЧ не может выполнить захват частоты. Он снимается с вывода 5 (ERF) микросхемы IC1 и используется для управления выходным реле (отключает выход ЦАП).

Сигнал сброса приемника и цифрового фильтра формирует цепь R6-C13 и инвертируется микросхемой IC5. Сигнал наличия деэмпфазиса с цифрового приёмника передаётся цифровому фильтру, который и обеспечивает коррекцию искажений. Двенадцать DIP-переключателей позволяют задать различные параметры фильтра: форматы входных и выходных данных, количество битов, характеристику фильтра и другие.

Цифровой фильтр управляет двумя микросхемами ЦАП: одна для левого и вторая для правого каналов. Выходной сигнал каждого из ЦАП является токовым. Такой выбор был сделан не случайно. Токовый выход позволяет получить хорошую линейность, низкий уровень шума, малое напряжение смещения и высокую скорость нарастания. Да, обычно ЦАП с токовым выходом стоят дороже, но и качество звучания (как правило) обеспечивают на более высоком уровне.

Аналоговый фильтр на выходе необходим для удаления из выходного сигнала остатков продуктов передискретизации и высокочастотного шума. Для расширения диапазона частот дискретизации в схеме использованы два выходных фильтра с разными частотами среза. Переключение фильтров осуществляется с помощью двух реле. Так как сопротивление фильтров достаточно велико, чтобы не ухудшать разделение каналов потребовалось использовать отдельное реле для каждого канала.

Выходное сопротивление фильтра составляет всего 100Ом, поэтому для реализации функции «MUTE» (приглушение) можно обойтись одним реле без ухудшения характеристик устройства. Эта функция позволяет избавиться от щелчков и шумов на выходе устройства во время переходных процессов при включении или ошибках чтения входных данных.

ПРИНЦИПИАЛЬНАЯ СХЕМА (ЦИФРОВОЙ ПРИЁМНИК)

Принципиальная схема блока цифрового приёмника и драйвера дисплея представлена на рисунке:

увеличение по клику

Главной задачей цифрового приёмника IC1 является декодирование потока данных в формате S/PDIF в последовательный формат данных, который может быть передан микросхемам ЦАП. Микросхема приёмника расположена на отдельной печатной плате таким образом, чтобы коаксиальный и оптический входные разъемы могли быть размещены в наиболее удобном месте на корпусе устройства.

Входной импеданс, который имеет традиционное для коаксиального входа значение в 75Ом, определяется номиналом резистором R1. Оптический вход реализован на широко распространённой микросхеме IC2. Сигнал с её выхода подается на вход IC1 через делитель R1-R2, значения резисторов которого выбираются таким образом, что сигнал на R1 был немного больше (0,6 В), чем стандартное значение для коаксиального входа (0,5 В).

При использовании оптического входа необходимо установить перемычку JP1. Коаксиальный вход при этом использоваться не может!

Резисторы R7-R10 необходимы для устранения высокочастотного «звона», вызванного ёмкостной нагрузкой образованной соединительным шлейфом и входной ёмкостью цифрового фильтра.

Режим работы цифрового приёмника задаётся уровнями на входах М0-М3. Подробнее о режимах работы можно прочитать в справочном руководстве на микросхему CS8414. Рекомендуемым режимом является I2S, так как при этом режиме число битов в принципе не фиксируется: это могут быть 16-битные данные или 24-битные. Поэтому необходимо установить DIP-переключатели S1 в положение S1-4 ON (M1 = 1), а остальные ВЫКЛ (М0 = М2 = М3 = 0).

Возможность выбора различных режимов работы цифрового приёмника была заложена с учетом возможного будущего расширения функционала или обновления конструкции. Так же это позволяет использовать плату приёмника для совместной работы с другими типами ЦАП.

Для снижения уровня шумов и помех микросхема кварцевого генератора IC3 расположена максимально близко к соответствующему входу (FCK) микросхемы IC1, а шина питания снабжена фильтром на элементах L3, C10, C11. В шинах питания других микросхем также установлены отдельные фильтры.

С выходов демультиплексора IC5 через разъём К2 сигналы (а также напряжение питания +5В и общий провод) поступают на блок индикации, который соединяется с платой приёмника 10-жильным кабелем. Для упрощения схемы и уменьшения цепей коммутации используется двухразрядный семисегментный индикатор, поэтому десятичная точка и дробные части для некоторых значений частоты дискретизации входного сигнала опускаются. При возникновении ошибки чтения входных данных (сигнал ERF — активный) на дисплее будут высвечиваться два тире. Благодаря размещению блока индикации на отдельной печатной плате его удобно монтировать в любом подходящем месте позади передней панели устройства.

Информация о тактовой частоте входного сигнала используется не только для индикации, но и для управления частотой среза выходных аналоговых фильтров ЦАП.

Сигнал о наличии в записи предискажений с выхода приёмника подаётся на цифровой фильтр. Индикация этого режима не предусмотрена, так как компакт-диски с такими записями встречаются довольно редко. Но раз уж они бывают, то данный ЦАП имеет возможность обработать любые предискажения, а обработка их в цифровом фильтре позволяет избавиться от необходимости коммутации дополнительных RC-цепей в аналоговом фильтре.

Продолжение следует...

Статья подготовлена по материалам журнала «Электор»,
вольный перевод Главного редактора «РадиоГазеты» .

ЦАП – цифро-аналоговые преобразователи – устройства, предназначенные для преобразования дискретного (цифрового) сигнала в непрерывный (аналоговый) сигнал. Преобразование производится пропорционально двоичному коду сигнала.

Классификация ЦАП

По виду выходного сигнала : с токовым выходом и выходом в виде напряжения;

По типу цифрового интерфейса : с последовательным вводом и с параллельным вводом входного кода;

По числу ЦАП на кристалле : одноканальные и многоканальные;

По быстродействию : умеренного быстродействия и высокого быстродействия.

Основные параметры ЦАП:

1. N – разрядность.

2. Максимальный выходной ток.

4. Величина опорного напряжения.

5. Разрешающая способность.

6. Уровни управляющего напряжения (ТТЛ или КМОП).

7. Погрешности преобразования (погрешность смещения нуля на выходе, абсолютная погрешность преобразования, нелинейность преобразования, дифференциальная нелинейность). 8. Время преобразования – интервал времени с момента предъявления (подачи) кода до момента появления выходного сигнала.

9. Время установления аналогового сигнала

Основными элементами ЦАП служат:

Резистивные матрицы (набор делителей с определенным ТКС, с определенным отклонением 2%, 5% и менее) могут быть встроены в ИМС;

Ключи (на биполярных или МОП-транзисторах);

Источник опорного напряжения.

Основные схемы построения ЦАП.


21. Ацп. Общие положения. Частота дискретизации. Классификация ацп. Принцип работы ацп параллельного действия.

По быстродействию АЦП делят на:

1. АЦП параллельного преобразования (параллельные АЦП) – быстродействующие АЦП, имеют сложное аппаратное использование единицы ГГц.разрешение N = 8-12 бит, Fg = десятки МГц

2. АЦП последовательного приближения (последовательного счета) до 10МГц.разрешение N = 10-16 бит, Fg = десятки кГц

3. Интегрирующие АЦП сотни Гц.разрешение N = 16-24 бит, Fg = десятки

4. Сигма-дельта АЦП единицы МГц.разрешение N = 16-24 бит, Fg = сотни Гц

22. Ацп последовательного счета. Принцип действия.

23. АЦП последовательных приближений. Принцип действия.

Этот код с выхода РПП подается на ЦАП, который выдает соответствующее напряжение 3/4Uвхmах, которое сравнивается с Uвх (на СС) и результат записывается в тот же разряд четвертым тактовым импульсом. Далее процесс продолжается до тех пор, пока не будут проанализированы все разряды.

Время преобразования АЦП последовательного приближения:

tпр = 2nTG, где TG – период следования импульсов генератора; n – разрядность АЦП.

Такие АЦП уступают по быстродействию АЦП параллельного типа, однако они более дешевые и потребляют меньшую мощность. Пример: 1113ПВ1.

24. Принцип работы ацп интегрирующего типа.

В основе принципа работы интегрирующего АЦП лежат два основных принципа:

1. Преобразование входного напряжения в частоту или в длительность (время) импульсов

Uвх → f (ПНЧ – преобразователь напряжение-частота)

2. Преобразование частоты или длительности (времени) в цифровой код

f → N; T→ N.

Основную погрешность вносят ПНЧ.

АЦП данного типа осуществляют преобразование в два этапа.

На первом этапе входной аналоговый сигнал интегрируетися и это проинтегрированное значение преобразуется в импульсную последовательность. Частота следования импульсов в этой последовательности или их длительность бывает промодулирована проинтегрированным значением входного сигнала.

На втором этапе эта последовательность импульсов преобразуется в цифровой код - измеряется ее частота или длительность импульсов.

Простейшим цифроаналоговым преобразователем (ЦАП) является одноразрядный преобразователь. В качестве такого ЦАП может служить простой усилитель-ограничитель, в качестве которого можно применить . Особенно хорошо подойдет выполненный по КМОП технологии, так как в данной технологии выходные токи единицы и нуля равны. такого цифро-аналогового преобразователя приведена на рисунке 1.


Рисунок 1. Принципиальная схема одноразрядного цифро-аналогового преобразователя (ЦАП)

Одноразрядный ЦАП преобразует в аналоговую форму знак числа. Для цифро-аналогового преобразования на очень высокой частоте дискретизации, во много раз превышающей частоту Котельникова, такого преобразователя вполне достаточно, однако, в большинстве случаев для качественного цифро-аналогового преобразования требуется большее количество разрядов. Известно, что двоичное число описывается следующей формулой:

(1)

Для преобразования цифрового двоичного кода в напряжение можно воспользоваться данной формулой непосредственно, т. е. применить аналоговый сумматор. Токи будем задавать при помощи резисторов. Если резисторы будут отличаться друг от друга в два раза, то и токи тоже будут подчиняться двоичному закону, как показано в формуле (1). Если на выходе регистра будет присутствовать логическая единица, то она будет преобразована в ток, соответствующий двоичному разряду при помощи резистора. В этом случае напряжений будет работать в качестве цифроаналогового преобразователя. Схема ЦАП, работающего по описанному принципу, приведена на рисунке 2.


Рисунок 2. Принципиальная схема четырехразрядного цифро-аналогового преобразователя с суммированием весовых токов

На схеме, приведенной на рисунке 2, потенциал второго вывода равен нулю. Это обеспечивается параллельной отрицательной обратной связью, которая уменьшает входное сопротивление операционного усилителя. Коэффициент передачи выбирается при помощи резистора, включенного с выхода на вход операционного усилителя. Если требуется единичный коэффициент передачи, то это сопротивление должно быть равно параллельному сопротивлению всех резисторов, подключенных к выходам параллельного регистра. В описанном устройстве ток младшего разряда будет в восемь раз меньше тока старшего разряда. Для уменьшения влияния входных токов реального операционного усилителя между его неинвертирующим входом и общим проводом включается резистор с сопротивлением равным параллельному включению всех остальных резисторов.

Учитывая, что на выходе всех разрядов регистра присутствует или нулевое напряжение или равное напряжению питания, на выходе операционного усилителя напряжение будет действовать в диапазоне от нуля до минус напряжения питания. Это не всегда удобно. Если нужно, чтобы устройство работало от одного источника питания, то ее нужно немного изменить. Для этого на неинвертирующий вход операционного усилителя подадим напряжение, равное половине питания. Его можно получить от резистивного делителя напряжения. Ток нуля и ток единицы выходного каскада регистра в новой схеме должны совпадать. Тогда на выходе операционного усилителя напряжение будет меняться в диапазоне от нуля до напряжения питания. Схема цифро-аналогового преобразователя с однополярным питанием приведена на рисунке 3.



Рисунок 3. Цифро-аналоговый преобразователь с однополярным питанием

В схеме, приведенной на рисунке 3, стабильность выходного тока и напряжения обеспечивается стабильностью напряжения питания параллельного регистра. Однако обычно напряжение питания цифровых микросхем сильно зашумлено. Этот шум будет присутствовать и в выходном сигнале. В многоразрядном цифро-аналоговом преобразователе это нежелательно, поэтому его выходные ключи запитываются от высокостабильного малошумящего . В настоящее время подобные микросхемы выпускаются рядом фирм. В качестве примера можно назвать ADR4520 фирмы Analog Devices или MAX6220_25 фирмы Maxim Integrated.

При изготовлении многоразрядных цифро-аналоговых преобразователей необходимо изготавливать резисторы с высокой точностью. Раньше это достигалось лазерной подгонкой резисторов. В настоящее время в качестве источников тока обычно используются не резисторы, а генераторы тока на полевых транзисторах. Применение полевых транзисторов позволяет значительно сократить размеры кристалла ЦАП. При этом для увеличения тока транзисторы соединяют параллельно. Это позволяет добиться высокой точности соответствия токов двоичному закону (i 0 , 2i 0 , 4i 0 , 8i 0 и т.д.). Высокая скорость преобразования достигается при малом сопротивлении нагрузки. Схема преобразователя цифрового кода в выходной ток, работающего по описанному принципу приведена на рисунке 4.



Рисунок 4. Внутренняя схема ЦАП с суммированием токов

Естественно, электронные ключи, показанные на рисунке 4, тоже представляют собой полевые транзисторы. Однако если их показать на схеме, то можно запутаться где ключ, а где генератор тока. Так как полевой транзистор может одновременно работать в качестве генератора тока и электронного ключа, то их часто объединяют, а двоичный закон формируют при помощи , как это показано на рисунке 5.



Рисунок 5. Внутренняя схема ЦАП с суммированием одинаковых токов

В качестве примера микросхем, где используется решение с суммированием тока, можно назвать ЦАП AD7945. В ней суммирование токов применяется для формированиястарших разрядов. Для работы с младшими разрядами используется . Для преобразования выходного тока в напряжение обычно применяется операционный усилитель, однако его скорость нарастания выходного напряжения оказывает существенное влияние на быстродействие цифро-аналогового преобразователя в целом. Поэтому схема ЦАП с операционным усилителем используется только в широкополосных схемах, таких как преобразование звукового или телевизионного сигнала.


Рисунок 6. Цифро-аналоговый преобразователь двоичный код-напряжение

Литература:

Вместе со статьей "Цифроаналоговые преобразователи (ЦАП) с суммированием токов" читают:


http://сайт/digital/R2R/


http://сайт/digital/sigmaadc.php

Всем привет. Сегодня хочу поговорить о достаточно неплохом USB ЦАПе начального уровня.

Данное устройство должно заинтересовать следующие категории людей:

1) Пользователи ноутбуков и стационарников с вышедшей из строя встроенной аудио картой.

2) Пользователи ноутбуков, производитель которых не полностью добавил поддержку Windows 10.
Это как раз мой случай, подробнее:

Раскрыть пояснение

На работе выдали «новый» б/у ноутбук, в замен моего Lenovo T420 который работал на Windows 7 и находился в очень хорошем состоянии, но не совместимый с Windows 10, на который компания решила перейти полностью, по ряду соображений (официально из-за безопасности, но понятно что тут ещё фактор поддержки и совместимости сыграл роль, не только со стороны Microsoft).

Выдали мне HP Revolve 810, который вроде бы совместим с Windows 10. Всё вроде бы есть, но официального драйвера именно на звуковуху нет! Так как аудио достаточно редкое, фирма IDT:
HDAUDIO\FUNC_01&VEN_111D&DEV_76E0&SUBSYS_103C21B3&REV_1003
(такие чипы ещё любил ставить Intel на свои матерински), дрова найти особо негде.

На форуме HP наткнулся на ссылку на совместимый драйвер от такого же пользователя как и я, при этом он говорит что драйвер кривоват…
Так как драйвер взят непонятно где, да и ещё не ясно насколько хорошо работает, решил не ставить его на рабочий ноут, и пришлось мне довольствоваться стандартным виндовым драйвером.

Как показала практика, пользоваться стандартным, автоматически установленным драйвером на аудио можно, но звук будет похуже, чем мог бы быть с драйвером.
Если у вас настольная плата, то при эксплуатации такого драйвера могут возникунть проблемы с работоспособностью линейного входа, а так же с другими функциями. Кроме того, при работе на «стандартном» драйвере нет эквалайзера, который, в прочем, можно покрутить например при использовании foobar2000.
После Lenovo T420, на тех же наушниках, звук меня не устроил. Да вроде играет, да вроде без искажений, но музыку не очень хочется слушать из-за того что она подаётся как то сухо, без прежнего эмоционального окраса что ли.


3) Как альтернативная аудио карта на портативных устройствах под управлением Android (условно называю аудио картой, так как на сабже нет микрофонного входа, привычного для такой категории устройств). По поводу IOS не могу сказать, возможно там тоже заведётся.

4) Пользователей прочих устройств у которых нет аудио на борту, и на которых имеется совместимая ОС.

Ранее, на данном сайте уже рассматривались похожие устройства, но в таком исполнении я не нашёл, посмотрев среди ранее обозреваемых.

Сразу же отмечу, что есть более доступный аналог этого ЦАПа:
, стоимостью примерно в 2 раза ниже, но и качество изготовления с материалами там похуже… Думал купить её для сравнения, но пока не стал, так как в любом случае буду переделывать выход (а это лишнее время), и пока не наигрался с первым ЦАП-ом.

На Aliexpress, к слову, цапы на PCM2704 раза в 2 дороже, и есть там в основном «большие» варианты, те которые с оптическим выходом и RCA.

Перейдём к обозреваемому ЦАП-у
Плата выполнена очень качественно. Текстолит очень толстый, пайка достаточно аккуратная, флюс отмыт. Выглядит платка весьма симпатично, но лучше, всё же, что бы она была в корпусе. Производитель не по жадничал и поставил танталовые конденсаторы в выходной фильтр. Смотрите сами:

Эксплуатация и впечатления о работе.
Начать работать с ЦАП-ом очень просто. Ручная установка каких либо драйверов не требуется. Под Windows XP/7/10 драйвер подхватывался автоматически.

В отличии от встроенного аудио, ЦАП играет ощутимо громче, при том же уровне громкости. Играет достаточно качественно, немного лучше чем встроенное в мой ноутбук аудио, но разница не особо ощутима, на уровне погрешности.

Со слов коллеги, с ноутбуком Lenovo, которому повезло с наличием realtek (и соответственно полноценных дров под десятку), на его ноутбуке встройка поинтересней данного ЦАПа.

Лично на мой взгляд, сабжу не хватает «мясца» (почерпнул эту достаточно подходящую аллегорию на каком то «аудио форуме») и детализации, по крайней мере при использовании наушников с импедансом 32Ом.

Наушнички у меня так себе, но и не самый шлак:


Это Pioneer SE-MJ21.

Специально для тестов, с большой скидкой были приобретены дополнительные наушники, адаптированные для портативной техники, в том числе заточенные для техники от производителя яблочной продукции:

В этих наушниках, видимо из-за высокой чувствительности, ЦАП орёт ещё сильнее, звук более приятен и интересен если слушать звук на той же громкости что и в предыдущих наушниках, но не особо сильно.

Видимо сказывается низкая мощность встроенного в PCM2704C усилителя и достаточно большие искажения при работе на 32Ом нагрузку. Сам ЦАП по аудиофильским меркам так себе, что подтверждается в параметрах из даташита.
Более «крутого» ЦАПа у меня сейчас нет, что бы сравнить их в лоб.

Я не отношу себя к аудиофилам, но всё же, зачастую их слова не лишены смысла, даже если они расходятся с данными из документации, но такое судя по всему редкое событие.
Как я уже отметил, сабж построен на PCM2704C , так же есть более старая версия чипа PCM2704, без приставки «C», который TI не рекомендует для новых проектов. Насколько я понял при достаточно поверхностном изучении даташита, особых отличий между чипами нет, распиновка и характеристики одинаковые.

Работа под Android:
Под Android ЦАП работает, определяется телефоном в течении секунд 5 и дальше понеслась.
Я провел лишь беглое тестирование, опробовав пару плееров. Все они, звук через ЦАП воспроизводят, но не могут управлять громкостью, поэтому громкость на максимуме.
Нужно покопаться ещё в настройках, но сделать это я сейчас не могу, так как тестировал бегло, на чужих смартфонах, из-за того что мой красный рис «кончился» около двух недель назад, а почта России морозит посылку в Москве уже неделю, сил моих нет больше тянуть с обзором)). Позже думаю дополню обзор или выпущу отдельную заметку под Android, с примечанием о регулировке звука.

Под Linux не проверял работоспособность, но работать должно. Если кто то из муськовчан сильно заинтересован, то могу проверить.

Дело было вечером, делать было нечего… Кастомизация.

Решил городить простенький усилитель (тестовый макет, не более того) на доступных сдвоенных операционных усилителях, предназначенных для аудио, вдруг он «раскачает» выхлоп, подумал я.
Так получилось, что у меня таких микросхем было две, и обе разные. Одна NE5532P купленная в локальном чип и дипе за 15р, и OPA2134 купленная пару лет назад на taobao, походу настоящая).
Когда собирал усилитель, собрал сначала один канал, и несколько дней гонял его с разными ОУ, оперативно передёргивая их из заранее предусмотренной для этих целей панельки, прямо в ходе прослушивания. Звучание было разное, но об этом в другом разделе.

В «законченном проекте» (думаю всё только начинается, если мне не будет лень) использую две NE5532AP, из чип и дипа, они по 21р).

Получилось вот такое «творение», предназначенное для обкатки и тестов:

Здесь много длинных проводов, но это лишь в менее значимых частях схемы, вход сделан максимально коротким (кроме электролита) и в экране.

Один из каналов:

Здесь питание импульсное, от powerbank-а, одна из первых реализаций. Подробнее о питании ниже.

Схемотехника усилителя.
Так имеющийся миниджек (культурно сделанный) затерялся где то дома, было принято решение подпаяться к соответствующим ногам чипа для получения входного сигнала на усилитель.
Согласно документации, ноги 14-15 отвечают за вывод сигнала с ЦАП. Подпаивался к этим ногам с помощью относительно тонкого 50Ом антенного кабеля: . При этом, к самой ноге паял тонкий, медный лакированный провод, толщиной примерно 0.2мм (микрометра нету у меня, поэтому не могу точно сказать, да и не столь важно это) и уже им подпаивался к жиле кабеля. Экран кабеля паял на GND платы, который обнаружился между двумя керамическими конденсаторами, идентичными для каждого их каналов.

Сам усилитель основан на следующей, незамысловатой схеме включения сдвоенного ОУ в качестве усилителя для наушников, рассмотренного компанией BB (TI):


Схема взята от сюда:

На вход данной схемы была добавлена последовательная цепочка из резистора 4.7К и электролитического конденсатора 10мкФ. Конденсатор подключается плюсом к входному сигналу.
Так же, был добавлен резистор между не инвертирующим входом первого ОУ и землёй.

Вот итоговая схема:

Как паял и как настраивал.

Пару лет назад я паял предусилитель для динамического микрофона, и извлёк из этого кое какой опыт:
Во первых, если делается тестовый макет, в том числе с навесным монтажом, проводные соединения должны быть как можно короче и по возможности минимизированы. Расстояние между компонентами так же должно быть минимальным.
Слаботочные входные цепи должны быть экранированы и не должны пересекаться с питанием.
Всё это поможет снизить входной, собственный шум усилителя.

Первоначально, напаял переменных резисторов для тестирования входного фильтра и для подстройки коэффициента усиления, несмотря на то что обычно его задают заранее, а мощность уже регулируют переменным резистором, находящимся на входе, перед фильтром.
В конечном варианте макета, оставил лишь по переменнику 4.7К соединённому последовательно с резистором 3.3К, для каждого канала, в цепи задающий коэффициент усиления.
Кроме этого, пришлось повозиться с входным фильтром, в поисках оптимальных параметров. Здесь я подглядел в схему этого агрегата:
Нашёл в своих запасах около десятка разных конденсаторов. Это были бумажные, электролиты, плёночные и другие:

Конденсаторы

В итоге, понравилось звучание электролита 63V 10мкФ, перед которым был поставлен резистор 4.7К.

О питании

В данной схеме ОУ необходимо запитывать от двух полярного источника питания.
Необходим был преобразователь из одно полярного напряжения в двух полярное.
С Ebay, сейчас где то идёт специализированная микросхема для этих целей, но взята она была просто сравнить разницу с относительно нормальным двухполярным питанием (которое я планировал собрать сам), так как на данном сайте её успешно оттестировал Kirich и выявил что она «шумновата», что не есть гуд для аудио. Как приедет проверю и отпишусь.

В итоге, за основу была взята данная схема:


Проект USB звуковой карты высокого качества. Основан на микросхеме PCM2706, которая представляет собой 16-битный стерео цифро-аналоговый преобразователь. Этот чип имеет два аналоговых и один цифровой S/PDIF выход, а для его работы необходимо минимальное количество внешних компонентов.
PCM2706 имеет интегрированный USB 1.0 и USB 2.0 интерфейс, и питается непосредственно от USB-порта. PCM2706 является USB Plug-и-Play устройством и не требует установки драйверов под Windows и Mac OS.
Также чип имеет семь линий для управления кнопками:
регулировка громкости;
предыдущий и следующий трек;
начало воспроизведения/пауза;
остановка воспроизведения;
приглушение звука(mute).

Для использования этих функций вам не понадобится дополнительного программного обеспечения или драйверов, всё работает сразу же после подключения PCM2706 к USB.

Технические характеристики:
Напряжение питания: 5В
Интерфейс: USB 1.1, USB 2.0
Выходной интерфейс: наушники, S/PDIF
Частота дискретизации: 32 кГц, 44 кГц, 48 кГц
ОСШ: 98 дБ
Коэффициент нелинейных искажений: 0,006%
Выходная мощность аналогового выхода: 12 мВт
Потребляемая мощность: 35 - 45 мА
ОС: Windows 98, ME, 2000, XP и т.д., Mac OSX

Структурная схема PCM2706:



Схема ЦАПа:

Компоненты:
PCM2706 - 32-контактном корпусе TQFP - 1 шт
Кварцевый резонатор 12 МГц - 1 шт
Резистор 1 МОм - 1 шт
Резистор 3.3 кОм - 4 шт
Резистор 1.5 кОм - 2 шт
Резистор 22 Ом - 2 шт
Резистор 15 Ом - 2 шт
Конденсатор 100 мкФ - 2 шт
Конденсатор 47 мкФ - 2 шт
Конденсатор 1 мкФ - 4 шт
Конденсатор 22 нФ - 2 шт
Конденсатор 27 пФ - 2 шт
Ферритовый фильтр(L1) - 1шт
Кнопки, разъёмы - по вашему усмотрению

Печатная плата:

Фото готового ЦАПа:

Вольный перевод от , специально для

 
Статьи по теме:
Проверка рабочей тормозной системы
Нормативы эффективности торможения рабочей и аварийной тормозных систем, соответствующие СТБ 1641-2006, приведены в таблице: Таблица. Нормативы эффективности торможения транспортных средств рабочей и аварийной тормозных систем при проверках на стендах
Транспондеры: какой выгоднее?
9 января 2018 года по некоторым маршрутам платной дороги М-11 Москва-Санкт-Петербург на участке 15-58 км, строительство и эксплуатация которого осуществляется в рамках концессионного соглашения, меняется стоимость проезда. Для легкового транспорта основны
Микросхема MC34063 схема включения
Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь н
Как своими руками сделать педаль джимми хендрикса
Всем привет! Сегодняшняя статья посвящена примочкостроительству целиком и полностью. После её прочтения, ты сможешь с закрытыми глазами левой пяткой правой ноги собрать свой первый рабочий девайс. Ну или почти.У вопроса «Что заставляет гитариста взять