История открытия резины кратко. Кто придумал зимнюю резину? Отличие каучука от резины

На вопрос Кто придумал резину? заданный автором Yana Mashinskaya лучший ответ это История каучука началась со времен Великих географических открытий. Когда Колумб вернулся в Испанию, он привез из Нового Света множество диковин. Одной из них был эластичный мяч из «древесной смолы» , который отличался удивительной прыгучестью. Индейцы делали такие мячи из белого сока растения гевея, растущего на берегах р. Амазонки.
Сок гевеи индейцы называли «каучу» – слезы млечного дерева («кау» – дерево, «учу» – течь, плакать). От этого слова образовалось современное название материала – каучук. Кроме эластичных мячей индейцы делали из каучука непромокаемые ткани, обувь, сосуды для воды, ярко раскрашенные шарики – детские игрушки.
В Европе забыли про южноамериканскую диковинку до 18 в. , когда члены французской экспедиции в Южной Америке обнаружили дерево, выделяющее удивительную, затвердевающую на воздухе смолу, которой дали название «резина» (по латыни resina – смола). В 1738 французский исследователь Ш. Кондамин представил в Парижской академии наук образцы каучука, изделия из него и описание способов добычи в странах Южной Америки.
Если Вы имеете в виду автомобильные шины, то
Первая в мире резиновая шина была сделана Робертом Уильямом Томсоном. В патенте № 10990, датированным 10 июня 1846 г. , написано: «Суть моего изобретения состоит в применении эластичных опорных поверхностей вокруг ободьев колес экипажей с целью уменьшения силы, необходимой для того, чтобы тянуть экипажи, тем самым, облегчая движение и уменьшая шум, который они создают при движении» .
В 1888 г. идея пневматической шины возникла вновь. Новым изобретателем был шотландец Джон Данлоп, чье имя известно в мире как автора пневматической шины. Дж. Б. Данлоп придумал в 1887 г. надеть на колесо трехколесного велосипеда своего 10-летнего сына широкие обручи, сделанные из шланга для поливки сада, и надуть их воздухом. 23 июля 1888 г. Дж. Б. Данлопу был выдан патент № 10607 на изобретение, а приоритет на применение «пневматического обруча» для транспортных средств подтверждал следующий патент от 31 августа того же года. Камера из резины крепилась на обод металлического колоса со спицами обматыванием ее вместе с ободом прорезиненной парусиной, образующей каркас шины, в промежутках между спицами.

Ответ от Абдула Рашидович [гуру]
товаришь Гудьер. в англии.


Ответ от Sergey F [гуру]
помоему наши учённые.. в промышленных целях.. а так резина существует очнь давно
ещё тузмцы получали её путём сбора млечного сока дерева гивеи, который застывал
на теле.. после чего его собирали снимая с себя как вторую кожу)


Ответ от Куско [новичек]
Первый промышленный синтетический каучук (резина) был получен в России в 1931 г. Профессор С. В. Лебедев открыл экономичный способ производства бутадиена из этилового спирта и осуществил полимеризацию бутадиена по радикальному меха­низму в присутствии металлического натрия
А натуральный каучук издавна из деревьев получали 🙂

Статья о создании шин поможет узнать, как изобреталась и изменялась авторезина, и что сделало ее такой устойчивой, надежной, прочной и износостойкой.

Сегодня сложно представить, что когда-то на колеса автомобиля не ставились покрышки. Это было в эпоху первых автомашин и деревянных колес. Правда, они даже при неинтенсивной эксплуатации быстро разрушались и требовали замены. Изобретение колеса, усиленного при помощи стального обода (прообраза современного диска) решило эту проблему, но и эта технология не дала нужных результатов.

История о создании автомобильных шин

Роберт Уильям Томпсон первым придумал использовать шины из эластичного материала для увеличения комфортабельности и безопасности автомобиля в 1846 году, разработал конструкцию автошины и запатентовал свое изобретение. Покрышку, изобретенную Томпсоном, еще называли «воздушным колесом». Она представляла собой камеру из плотной парусины, пропитанную раствором каучука или гуттаперчи обитую снаружи кусками кожи.

Начинания Томпсона подхватили другие изобретали. Многочисленные эксперименты энтузиастов увенчались успехом: была изобретена каучуковая пневмошина, с отделенной от камеры покрышкой. Появление пневматического колеса позволило сделать вождение плавным. Сами автошины стали прочнее и долговечнее (эти параметры отсутствовали в первых вариациях изобретения).

Открытие вулканизации

Статья об изобретении шин невозможна без упоминания о Чарльзе Гудьире.

Процесс вулканизации позволил организовать производство по-настоящему прочной, и при этом эластичной шины. Американский изобретатель Чарльз Гудьир в 1839 году даже не подозревал, что созданная им технология производства резины путем соединения каучука и серы станет неотъемлемой частью производства автомобильных покрышек.

В 1830-е Гудьир занимался производством прорезиненной обуви и ткани. На своем предприятии он выпускал каучуковые игрушки, одежду, обувь, зонтики. Однако свойства этого материала не позволяли товарам быть качественными: каучук плавился от высоких температур, был непрочен и имел другие недостатки.

Гудьир всерьез взялся за эту проблему. Путем экспериментов он узнал, что нагревание каучука, смешанного с серой, дает материалу необходимую прочность, причем не только на поверхности, но и по всей его толщине. Можно с уверенностью сказать, что 1839 год - время изобретения резины для автомобилей.

Компания Goodyear. Основание и первые годы работы

Предприятие Goodyear Tire & Rubber Company было зарегистрировано в 1898 году в США. В тот день началась история создания шин Goodyear. Основатель, Фрэнк Зиберлинг, назвал свою компанию в честь того самого изобретателя технологии вулканизации.

С самого основания компании ее продукция стала востребованной и покупаемой. Уже спустя 4 года, в 1901, предприятие стало создавать шину для автомобиля знаменитого Генри Форда. Известный в те годы авто Model T был оборудован покрышками марки Goodyear.

В 1907 году председатель правления бренда получает патент на изобретенную им съемную автошину. Эту технологию Goodyear сегодня используют повсеместно.

Эксперименты, постоянное улучшение характеристик продукции и внедрение новых технологий позволили концерну к 1926 году стать крупнейшим в мире производителем автомобильных шин и других резинотехнических изделий.

Расширение деятельности

В период с 1927 года по наши дни компания активно развивалась, осваивались новые производственные возможности, улучшались конструкции, проектировались шины не только для автомобилей, но и для авиационной техники. В 1971 производитель выпустил покрышки для лунохода Apollo 14. Отпечатки протектора этих шин остались на луне на века.

В эти годы открываются научно-технические центры, представительства во многих странах мира, заключаются соглашения с известными брендами. Все это позволяет Goodyear быть на шаг впереди конкурентов - компания первая внедряет инновационные решения, выводя на рынок новые продукты с улучшенными характеристиками.

Отдельно стоит упомянуть и о безупречной репутации бренда. Goodyear неоднократно занимал топовые места в рейтингах самых ответственных и надежных компаний.

О производстве Goodyear

Основываясь на истории по созданию шины, опыте и традициях, в наши дни компания удерживает одно из лидирующих мест среди производителей автомобильных шин. Заводы бренда выполняют полный цикл работ по созданию высококачественной шины: от проектирования шины и создания резиновой смеси до выпуска и тестирования нового продукта.

Создание автомобильной резины Goodyear ведется на самых современных производственных линиях. Корректировка производственных процессов, состава резиновой смеси, улучшение рисунка протектора и добавление функциональных вставок позволяют выпускать новые модели, предназначенные для разных категорий автолюбителей (жителей северных регионов, бездорожья, грузовых авто и др.).

Резина и силика - главные компоненты автопокрышки

Пневматическая автомобильная шина - высокотехнологичная конструкция, способная удерживать воздух под давлением. Благодаря изобретению Чарльза Гудьира, сегодняшняя авторезина представляет собой смесь натурального и искусственного каучука, сажи, серы, кремниевых и синтетических соединений. Все эти компоненты на производстве проходят через миксер, в результате получается полотно сырой резины.

Силика - еще один материал, применяемый в современном производстве. Эта кислота, улучшающая эластичность и сцепные характеристики резины была открыта еще в 50-е годы прошлого столетия. Процесс развития технологии добавления силики в смесь на шинных производствах запущен сравнительно недавно. Это объясняется дороговизной материала и необходимостью использования спецоборудования для ее смешения с резиной.

Конструкция шины

На пневматических шинах обязательно присутствует несколько элементов:

  • каркас - основа изделия, представляющая собой несколько слоев обрезиненного корда,
  • боковина - наружный резиновый элемент, призванный обезопасить конструкцию от внешних повреждений в боковой части,
  • борт - жесткое крепление к колесу на покрышке,
  • брекер - защищает каркас от ударов и придает изделию жесткость,
  • протектор - канавки и желобки на прорезиненной поверхности покрышки, обеспечивающие отсутствие скольжения и безопасное передвижение при неблагоприятных внешних условиях: на грязи, грунтовой дороге, мокрой, заснеженной или обледенелой трассе.

Автомобильная резина от Goodyear постоянно совершенствуется, конструктивные элементы приобретают новые свойства.

1817 — немецкий барон Карл фон Дрейс изобрёл велосипед, сделанный полностью из дерева. Можно сказать, что на нём были установлены деревянные шины.

1844 — Чарльз Гудиер открыл процесс вулканизации резины, который изменил историю велосипедных шин. До открытия процесса вулканизации резина была нестабильной, поскольку не сохраняла свою форму: становилась слишком мягкой в жаркую погоду и хрупкой на холоде. Изобретение компании Goodyear превратило резину в мягкий материал, который идеально подходил для велосипедных шин. В течение нескольких лет велосипедные шины были сделаны из твердой резины. Хотя они были тяжелыми и не обеспечивали плавный ход, но они все же были крепче, чем предыдущие. Сегодня еще можно найти несколько типов шин из твердого каучука.

1845 — Инженер Роберт Томпсон из Англии получил патент на своё изобретение. Шина Томпсона состояла из камеры, которая изготавливалась из кусков парусины, пропитанных каучуком и самой покрышки из кожи, прикреплённой к ободу колеса заклёпками. Томпсон назвал это изобретение воздушным колесом. Гениальное изобретение Томпсона не имело коммерческого успеха и скоро было забыто.

1870 — В Англии, инженер по имени Джеймс Старлей выпускает велосипед , на котором использовал цельные литые резиновые шины, установленные на стальные диски.

1882 — Томас Б. Джеффри, производитель велосипедов и изобретатель, получил патент на улучшенную шину. Новшеством было то, что он по краям шины вплавлял в резину проволоку, которая жёстко фиксировала её на ободе колеса. До этого, велосипедные шины крепили к краю обода с помощью клея или заклёпок, что было небезопасно, потому что шины часто сходили с обода.

1887 — , шотландский ветеринар, разрабатывает первую в мире пневматическую шину, наполненную воздухом на трехколесный велосипед своего сына. Шина Dunlop, для которой он был выдан патент в 1888 году имеет кожаный шланг, выступающей в качестве внутренней трубки и внешней части шины с резиновым протектором. Его изобретение позволило комфортно ездить на велосипеде. Такие шины применялись вплоть до момента изобретения отдельной камеры.

1893 — Август Шредер и его сын Джордж Шредер изобретают улучшенную версию клапана для удержания и накачки воздуха в шины. Шредер клапаны все еще широко используется в производстве велосипедных шин.

1911 — Филипп Страус изобрел комбинацию, где, была резиновая трубка, заполненная воздухом внутри и резиновая шина с внешней стороны.

1933 — немецкий инженер и предприниматель, эмигрировавший в Америку Игнац Швин разработал расширенную шину, которая дала начало внедорожному использованию велосипеда.

1978 — Запуск в производство первых высококачественных складных шин Turbo.

Современные велосипедные шины используются с 1970-х годов, со многими доработками и усовершенствованиями, направленными на надёжность и для улучшения спортивных результатов. Современные шины разработаны с большим акцентом на аэродинамику, легкий вес с применением специальных материалов, которые обеспечивают эффективность и минимальное сопротивление при движении. С появлением современных технологий и автоматизированного проектирования велосипедная шина продолжает развиваться.

Также на эту тему читать:

Или взять, например период с 1951 по 1956 год, когда группа молодых велосипедистов, числом около 20-ти человек из Франции попробовали разработать велосипед удивительно похожий на современный горный. Он был оснащён большим количеством технических новинок…

Определить изобретателя и место изобретения практически невозможно, теория об этом строится на догадках и тех малых обрывках информации, которые дошли до наших дней. Примерно также, как нельзя определить когда и где люди научились использовать процесс горения…

1817 – немецкий барон Карл фон Дрейс изобрёл велосипед, сделанный полностью из дерева. Можно сказать, что на нём были установлены деревянные шины…

Имея мобильный телефон или любое средство выхода в интернет, можно посмотреть, где в вашем районе поблизости имеется свободный велосипед и сделать заявку на его использование перед выходом из дома. После этого заказчик получает пин код…

Скорость и маневренность, небольшие габариты и дешевизна велосипеда сыграли свою роль в выборе этого вида транспорта для оснащения полицейских патрулей. Велосипед имеет преимущества движения в пробках, лавируя между автомобилями, проезд по тротуарам…

Кто придумал зимнюю резину?

Календарь автолюбителя отличается от календаря обычного человека. Смена сезонов для владельца автомобиля ознаменована важным для него событием: сменой покрышек. Как выяснилось, далеко не все знают и понимают, для чего необходимо «переобуваться» перед началом холодов и после них. Многие воспринимают это лишь как повод для придирок гаишников. На самом же деле, от напрямую зависит безопасность движения, и смена покрышек — дело жизненно важное!

1. Отличия летней и зимней резины

Основные различия летней и зимней резины заключаются в составе самой резины и рисунке протектора.

Резина, как и любой другой материал, дубеет при низкой температуре. Соответственно, покрышка на морозе теряет мягкость, становится «пластмассовой». Это негативно отражается и на самой покрышке — она скорее , и на безопасности езды. Смену летних покрышек на зимние рекомендуют делать, когда температура воздуха понизится до +7°С. При такой температуре, и, тем более, при более низких температурах, летняя резина становится небезопасной.

Зимняя резина, за счёт специальных добавок, сохраняет мягкость и на холоде. Зная это, вы поймёте, почему не стоит на зимних покрышках ездить летом: в тепле, а уж тем более, в жару, зимняя покрышка становится слишком мягкой, чтобы обеспечить безопасность движения.

Протектор зимней резины имеет рисунок, составленный из «шашечек» различной конфигурации. Их предназначение — обеспечить сцепление покрышки с заснеженной дорогой. На летнем асфальте «шашечки» бесполезны, и даже опасны, так как такой протектор снижает управляемость автомобиля.

2. Когда появилась зимняя резина?

Первые попытки создать зимнюю резину были сделаны в Финляндии. Пионером выступила компания Suomen Gummitehtas, впоследствии переименованная, и известная сегодня, как Nokian.

В продажу зимние шины поступили в 60-х годах XX века. От летней резины они отличались лишь наличием металлических деталей, прообразом современных шипов. Шипы улучшали сцепление колеса с дорогой, но сама резина продолжала трескаться и лопаться на морозе.

Следующий шаг в эволюции зимней резины был сделан компанией Metzeler. Её специалисты после ряда экспериментов нашли добавку, которая позволяла резине сохранять упругость и на холоде. Такой добавкой стала кремниевая кислота.

Между тем, в ряде стран запретили использование шипованных покрышек, ввиду того, что они негативно воздействовали на дорожное покрытие. Производители направили свои усилия на создание шин с особым, «зимним», рисунком протектора. Первой нешипованные зимние покрышки потребителям предложила компания Bridgestone в 1982 году.

Таким образом, появлению современной зимней резины мы обязаны не какому-то одному гениальному изобретателю, а совместным усилиям инженеров ведущих мировых производителей автомобильных покрышек.

3. Шиномонтаж

Осуществляется по тем же правилам, что и летней резины. Проследите, чтобы при установке было соблюдено направления вращения покрышек. Потребуйте от сотрудников мастерской тщательно отбалансировать колёса. Нелишним будет после установки зимней резины проверить и отрегулировать развал-схождение.

), основу к-рых (обычно 20-60% по массе) составляют каучуки . Др. компоненты резиновых смесей-вулканизующие агенты, ускорители и активаторы вулканизации (см. Вулканизация), наполнители , противо-старители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации , модификаторы, красители , порообра-зователи, антипирены , душистые в-ва и др. ингредиенты, общее число к-рых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техн. требованиями к изделию, технологией произ-ва, экономич. и др. соображениями (см. Каучук натуральный , Каучуки синтетические).

Технология произ-ва изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей , корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением спец. сборочного оборудования и вулканизацию изделий в аппаратах периодич. (прессы, котлы, автоклавы , форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей , благодаря к-рой им придается форма будущего изделия, закрепляемая в результате вулканизации . Широко применяют формование в вулканизац. прессе и литье под давлением , при к-рых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков . При вулканизации смесей, содержащих 30-50% по массе S в расчете на каучук , получают эбониты .

Свойства. Резину можно рассматривать как сшитую коллоидную систему , в к-рой каучук составляет дисперсионную среду , а наполнители-дисперсную фазу. Важнейшее св-во резины- высокая эластичность, т. е. способность к большим обратимым деформациям в широком интервале т-р (см. Высокоэластическое состояние).

Р езина сочетает в себе св-ва твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизац. сеток с ростом т-ры, энтропийная природа упругости).

Р езина-сравнительно мягкий, практически несжимаемый материал. Комплекс ее св-в определяется в первую очередь типом каучука (см. табл. 1); cв-вa могут существенно изме няться при комбинировании каучуков разл. типов или их модификации.

Модуль упругости резин разл. типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэф. Пауссона близок к 0,5. Упругие св-ва резины нелинейны и носят резко выраженный релаксац. характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и т-ры. Деформация обратимого растяжения резины может достигать 500-1000%.

Ниж. предел температурного диапазона высокоэластичности резины обусловлен гл. обр. т-рой стеклования каучуков , а для кристаллизующихся каучуков зависит также от т-ры и скорости кристаллизации . Верх. температурный предел эксплуатации резины связан с термич. стойкостью каучуков и поперечных хим. связей, образующихся при вулканизации . Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую прочность . Применение активных наполнителей (высокодисперсных саж , SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резин из кристаллизующихся каучуков . Твердость резины определяется содержанием в ней наполнителей и пластификаторов , а также степенью вулканизации . Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м. б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики резин: коэф. термич. расширения, уд. объемная теплоемкость , коэф. теплопроводности . Циклич. деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Резины характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляц. св-вами. Они диамагнетики и хорошие диэлектрики , хотя м. б. получены токопроводящие и магнитные резины.

Р езины незначительно поглощают воду и ограниченно набу-хают в орг. р-рителях. Степень набухания определяется разницей параметров р-римости каучука и р-рителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью , стойкостью к действию хим. агрессивных сред, озона , света, ионизирующих излучений . При длит. хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их мех. св-в, снижению прочности и разрушению. Срок службы резин в зависимости от условий эксплуатации от неск. дней до неск. десятков лет.

Классификация . По назначению различают след. осн. группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию хим. агрессивных сред, диэлектрич., электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищ. и мед. назначения, для условий тропич. климата и др. (табл. 2); получают также пористые, или губчатые (см. Пористая резина), цветные и прозрачные резины.

Применение. Резины широко используют в технике, с. х-ве, быту, медицине, стр-ве, спорте. Ассортимент резиновых изделий насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Кор-нев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б. А., Донцов А.А., Шершнев В.А., Химия эластомеров , 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю. С., Дегтева Т. Г., Стойкость эластомеров в эксплуатационных условиях, М., 1986; Лепетов В. А., Юрцев Л. Н., Расчеты и конструирование резиновых изделий , 3 изд., Л., 1987. Ф.Е. Куперман.

 
Статьи по теме:
Продажа вертолетов Bell Радиоуправляемые вертолеты – моделей много, принцип выбора один
США, Япония, Тайвань, Германия и Италия Тип: вертолет общего назначения и непосредственной поддержки Вместимость : пилот и до 14 пассажиров (модификация UH-1H) Семейство вертолетов Bell UH-1, построенное со времени окончания Второй мировой войны в больше
​Путешествие в страну Дорожных знаков
Главным документом, регламентирующим правила поведения на дороге, является ПДД. Что касаемо детей, то значимым знаком является «Осторожно Дети» 1.23 по ПДД. Соблюдение правил очень важно, поскольку, в противном случае, могут возникнуть непоправимые послед
Транспортные средства: классификация
Таблица 4 Классификационный признак Специальный Специализированный По назначению Пожарный Медицинской помощи Охранный Автокраны Уборочный Самосвалы с навесным оборудованием Фургоны с навесным оборудованием Цистерны Контейнеровозы Мусоровозы
Демонтаж «фартука» приборной панели
Многие автолюбители сталкивались с тем, что на ВАЗ-2114 гасла одна из ламп ближнего света. Почему это случается? Ответ достаточно простой – лампочка перегорела и её необходимо заменить. Многие автомобилисты зададутся вопросом – как это сделать? Достаточно