Конструкция крепления интерцептор крыла самолета. "Командир, мы падаем!" Почему в последние секунды экипаж говорил о закрылках? Радиотехнические системы посадки

Закрылки

Закрылки - отклоняемые поверхности, симметрично расположенные на задней кромке крыла. Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полётe на малых скоростях.

Принцип работы закрылков заключается в том, что при их выпуске увеличивается кривизна профиля и (в некоторых случаях) площадь поверхности крыла, следовательно, увеличивается и подъёмная сила . Кроме того, выпуск закрылков способствует увеличению аэродинамического сопротивления . При выпуске закрылков обычно возникает необходимость перебалансировки самолёта из-за возникновения дополнительного продольного момента, что усложняет управление самолётом. Закрылки, образующие при выпуске профилированные щели, называют щелевыми . Закрылки могут состоять из нескольких секций, образуя несколько щелей (как правило, от одной до трех). К примеру, на отечественном Ту-154М применяются двухщелевые закрылки, а на Ту-154Б - трёхщелевые. Щели способствуют перетеканию воздушного потока с нижней поверхности на верхнюю, одновременно разгоняя его. Это помогает затянуть срыв потока с закрылков и, таким образом, увеличить возможный угол их отклонения и допустимый угол атаки.

Флапероны

Флапероны , или «зависающие элероны» - элероны , которые могут выполнять также функцию закрылков при их синфазном отклонении вниз. Широко применяются в сверхлёгких самолётах и радиоуправляемых авиамоделях при полётах на малых скоростях, а также на взлёте и посадке. Иногда применяется на более тяжелых самолётах (например, Су-27). Основное достоинство флаперонов - это простота реализации на базе уже имеющихся элеронов и сервоприводов .

Предкрылки

Предкрылки - отклоняемые поверхности, установленные на передней кромке крыла. При отклонении образуют щель, аналогичную таковой у щелевых закрылков. Предкрылки, не образующие щели, называются отклоняемыми носками. Как правило, предкрылки автоматически отклоняются одновременно с закрылками, но могут и управляться независимо.

В целом, эффект предкрылков заключается в увеличении допустимого угла атаки, то есть срыв потока с верхней поверхности крыла происходит при бо́льшем угле атаки.

Помимо простых, существуют так называемые адаптивные предкрылки . Адаптивные предкрылки автоматически отклоняются для обеспечения оптимальных аэродинамических характеристик крыла в течение всего полета. Также обеспечивается управляемость по крену при больших углах атаки с помощью асинхронного управления адаптивными предкрылками.

Интерцепторы

Интерцепторы (спойлеры) - отклоняемые или выпускаемые в поток поверхности на верхней и(или) нижней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают(увеличивают) подъёмную силу. Поэтому интерцепторы также называют органами непосредственного управления подъёмной силой. Не следует путать интерцепторы с воздушными тормозами.

В зависимости от площади поверхности консоли, расположения её на крыле и т. д. интерцепторы делят на:

Внешние элерон-интерцепторы

Элерон-интерцепторы представляют собой дополнение к элеронам и используются в основном для управления по крену. Они отклоняются несимметрично. Например, на Ту-154 при отклонении левого элерона вверх на угол до 20°, элерон-интерцептор на этой же консоли автоматически отклоняется вверх на угол до 45°. В результате подъёмная сила на левой консоли крыла уменьшается, и самолёт кренится влево.

У некоторых самолетов, например, МиГ-23 , интерцепторы (наряду с дифференциально отклоняемым стабилизатором) являются главным органом управления по крену.

Спойлеры

Спойлеры (интерцепторы) - гасители подъемной силы.

Симметричное задействование интерцепторов на обоих консолях крыла приводит к резкому уменьшению подъемной силы и торможению самолёта. После выпуска самолёт балансируется на бо"льшем угле атаки, начинает тормозиться за счет возросшего сопротивления и плавно снижаться. Возможно изменение вертикальной скорости без изменения угла тангажа.

Интерцепторы также активно используются для гашения подъемной силы после приземления или при прерванном взлёте и для увеличения сопротивления. Необходимо отметить, что они не столько гасят скорость непосредственно, сколько снижают подъёмную силу крыла, что приводит к увеличению нагрузки на колеса и улучшению сцепления колёс с поверхностью. Благодаря этому, после выпуска внутренних интерцепторов можно переходить к торможению с помощью колёс.

См. также

  • Роторный предкрылок - движитель на основе предкрылка
  • Вибрирующий предкрылок - движитель на основе предкрылка
  • Элероны - рули, управляющие креном самолёта.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Закрылки" в других словарях:

    закрылок Энциклопедия «Авиация»

    закрылок - Закрылки. закрылок — профилированный, обычно отклоняющийся элемент механизации крыла, расположенный вдоль его задней кромки и предназначенный для улучшения аэродинамических характеристик летательного аппарата. З. используются при взлёте и… … Энциклопедия «Авиация»

    1 Законцовка. 2 Элерон. 3 Высокоск … Википедия

    Крыло(левая консоль) самолёта с выпущенной механизацией. Механизация крыла совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки,… … Википедия

    Крыло(левая консоль) самолёта с выпущенной механизацией. Механизация крыла совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки,… … Википедия

    Крыло(левая консоль) самолёта с выпущенной механизацией. Механизация крыла совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки,… … Википедия

    Крыло(левая консоль) самолёта с выпущенной механизацией. Механизация крыла совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки,… … Википедия

Согласно определению, закрылком называется отклоняющаяся вниз или выдвигающаяся и одновременно отклоняющаяся задняя часть крыла. Поскольку добавить к этому нечего, сразу переходим к обсуждению использования закрылков в полете.

У курсантов, летающих в России, регулярно возникает вопрос: «Когда и на какой угол выпускать закрылки?». Рекомендации инструкторов на эту тему часто противоречат друг другу, как и «стандартные процедуры» больших авиакомпаний. Попытки найти истину в РЛЭ небольшого самолета обычно успеха не имеют, особенно если это самолет зарубежного производства.

Попробую внести некоторую ясность.

В западной летной школе существует единый подход к тому, как и когда выпускаются закрылки. Он выглядит следующим образом: закрылки выпускаются только в полетах с короткой полосы или мягкого грунта, а также при выполнении вынужденной посадки или посадки «из предосторожности». Нормальные взлет и посадка выполняются БЕЗ ЗАКРЫЛКОВ. Такова устоявшаяся практика и на этом построен летный экзамен.

Хочу особо подчеркнуть, что на Западе для малой авиации нормальным взлетом и посадкой (Exercise 16 и 18) считается работа с такой полосы, которыми в России располагают лишь крупные аэроузлы и военные аэродромы. Скажем, обучаясь в аэроклубе в Канаде, я выполнял полеты с полос длиной 7900 и 6200 футов международного аэропорта города Реджайны. Уверен, что ВПП многих российских аэроклубов и АУЦ в настоящее время далеки от этих характеристик. Поэтому большинство полетов в России можно классифицировать как полеты с коротких полос или с мягкого грунта, где выпуск закрылков полностью оправдан и прекрасно коррелирует со стандартными требованиями западной школы.

Для больших авиалайнеров (в силу их значительной массы и скорости) все взлеты и посадки являются «короткими», и они всегда пользуются механизацией. Но поскольку в больших авиакомпаниях принято самостоятельно разрабатывать собственные технологии работы экипажей, стандартные процедуры и т.п., нам не следует безоговорочно принимать их как руководство к действию.

Универсальный же подход состоит в том, что условием для выпуска закрылков является длина полосы или состояние ее покрытия. И если мы летаем с короткой или грунтовой ВПП, то закрылки надо обязательно выпускать. Остается вопрос «когда это делать?».

Однако, если вы летаете на низкоплане, особенно таком как Як-18Т со щитком ПОД фюзеляжем и высоко расположенным стабилизатором, данный эффект не будет действовать в полном объеме. Субъективно вам может казаться, что щиток также дает сильное кабрирование, требующее коррекции штурвалом «от себя», но на самом деле, самолет просто «вспухает» за счет резкого увеличения подъемной силы при быстром выпуске щитка с 0 градусов до 50 (!) в один прием. Уже через несколько секунд после этого он спокойно летит с довольно низко опущенным носом, что ставит под сомнение создание «сильного кабрирующего момента».

Еще меньше кабрирующий момент ожидается на самолетах-низкопланах с «T-tail», таких, например, как Diamond Katana DA-20. На них стабилизатор и руль высоты находятся существенно выше зоны влияния скоса потока.

Таким образом, если для высокопланов и некоторых бипланов можно с уверенностью утверждать, что выпуск закрылков всегда вызывает кабрирующий момент, то для низкопланов и, особенно, низкопланов с «T-tail» это будет не совсем верно. На таких самолетах выпуск закрылков вполне может приводить к пикирующему моменту.

ВАЖНО: остерегайтесь выпуска закрылков в разворотах, делайте это строго в горизонтальном полете. Опасность состоит в том, что если один из них выходит из строя или примерзает, то второй, действуя как элерон, создает дополнительную подъемную силу только на одном крыле. Возникший из-за этого крен может сложиться с креном в развороте, и тогда ситуация очень быстро станет критической. Вы можете так и не понять, что произошло, перевернувшись вверх колесами в непосредственной близости от земли. В горизонтальном полете крен, возникший от несимметричного выпуска закрылков, легче заметить, и если это произошло, то нужно как можно быстрее перевести их селектор на уборку. В случае, если один из них заклинил в промежуточном положении, нужно установить в это же положение и второй и больше не пользоваться закрылками до окончания полета.

Конечно, поскольку Як-18Т оборудован только одним щитком, его несимметричный выпуск технически не возможен. Но я бы рекомендовал придерживаться единого стереотипа поведения независимо от типа самолета. Тем более, что на этом самолете щиток имеет лишь два положения «убран» и «выпущен», и при выпуске он отклоняется сразу на большой угол. Это требует энергичных контрдействий штурвалом для предотвращения набора высоты. При этом ориентироваться приходится по положению капота-горизонта или по проекции ВПП в лобовом стекле, что делать в развороте значительно труднее, чем в горизонтальном полете.

Также ВАЖНО, что выпуск и уборку закрылков, по возможности, следует производить в несколько приемов. Если выпуск в один прием не является чем-то особенно опасным, а лишь приводит к нежелательному набору высоты (что особенно заметно на Яках), то быстрая уборка ведет к существенной просадке самолета. Если это произойдет у самой земли (например, при уходе на второй круг), последствия могут быть катастрофическими.

Конечно, закрылки, выпущенные на заходе на 30 или 40 градусов, при уходе на второй круг надо оперативно убрать до 20, чтобы снизить аэродинамическое сопротивление. Как упоминалось выше, в этом случае потеря подъемной силы будет несущественна. Но делать это все-таки нужно без паники. Дав взлетный режим, следует удостовериться, что самолет начал набирать скорость в горизонтальном полете. Только когда скорость достигнет хотя бы Vx, можно убирать закрылки одним движением до 20 градусов и приступать к набору высоты. В процессе набора высоты закрылки доубирают в два этапа: сначала до 10 градусов, а затем полностью.

При выполнении конвейеров на Як-18Т с короткой полосы у курсанта может сформироваться моторный рефлекс на уборку щитка после посадки (так было у меня). Это связано с необходимостью всегда быстро убирать щиток на пробегах и отрабатывается до автоматизма многократными повторениями. Однако в том случае, когда по каким-либо причинам инструктор дает курсанту команду на уход на второй круг с малой высоты, этот рефлекс может сослужить дурную службу. Данный тип самолета при уборке щитка просаживается на десятки метров (до 50!), что чревато столкновением с землей. Мой инструктор дважды ловил мою руку на кране уборки в таких ситуациях. Постарайтесь избежать моих ошибок и делайте небольшую паузу перед тем как дергать краны и селекторы закрылков в воздухе. Не спешите, выдохните и подумайте еще раз, все ли вы правильно делаете. Если вы уже установили взлетный режим, то самолет будет лететь и даже устойчиво набирать высоту с выпущенным щитком, так что времени на раздумья у вас достаточно. В данном конкретном случае надо сначала убрать шасси и лишь затем, набрав минимум 50 метров, убрать щиток.

В этой статье мы рассмотрим основные принципы захода на посадку на больших реактивных самолетах применительно к нашим условиям. Хотя за основу рассмотрения выбран Ту-154, следует учитывать, что на других типах ВС применяются, в общем, сходные принципы пилотирования. Информацию взята из расчета на реальную технику, а испытывать судьбу мы будем пока в MSFS98-2002, есть у фирмы "Микрософт" такой компьютерный симулятор, возможно, вы даже слышали...

Посадочная конфигурация самолета

Конфигурация самолета - сочетание положений механизации крыла, шасси, частей и агрегатов ВС, определяющих его аэродинамические качества.

На транспортном самолете, еще до входа в глиссаду, должна быть выпущена механизация крыла, шасси и переложен стабилизатор. Кроме того, по решению командира воздушного судна, экипаж может включить автопилот и/или автомат тяги для захода в автоматическом режиме.

Механизация крыла

Механизация крыла - комплекс устройств на крыле, предназначенных для регулирования его несущей способности и улучшения характеристик устойчивости и управляемости. Механизация крыла включает закрылки, предкрылки, щитки (интерцепторы), активные системы управления пограничным слоем (например, его сдув, отбираемым от двигателей воздухом) и т.д.

Закрылки (flaps)

В целом, закрылки и предкрылки предназначены для повышения несущей способности крыла на взлетно-посадочных режимах.

Аэродинамически, это выражается в следующем:

  1. закрылки увеличивают площадь крыла, что приводит к увеличению подъемной силы.
  2. закрылки увеличивают кривизну профиля крыла, что приводит к более интенсивному отклонению воздушного потока вниз, что также увеличивает подъемную силу.
  3. закрылки увеличивают аэродинамическое сопротивление самолета, а значит вызывают уменьшение скорости.

Увеличение подъемной силы крыла позволяет снизить скорость до более низкого предела. Например, если при массе 80 т скорость сваливания Ту-154Б без закрылков составляет 270 км/ч, то после выпуска закрылков полностью (на 48 град) она уменьшается до 210 км/ч. Если уменьшить скорость ниже этого предела, самолет выйдет на опасные углы атаки, возникнет срывная тряска (бафтинг, buffeting) (особенно при убраных закрылках) и, в конце концов, произойдет сваливание в штопор .

Крыло, оборудованное закрылками и предкрылками, образующими в нем профилированные щели, называют щелевым . Закрылки также могут состоять из нескольких панелей и иметь щели. Например, на Ту-154М применяются двухщелевые , а на Ту-154Б трехщелевые закрылки (на фото Ту-154Б-2). На щелевом крыле воздух из области повышенного давления под крылом с большой скоростью поступает через щели на верхнюю поверхность крыла, что приводит к уменьшению давления на верхней поверхности. При меньшей разности давлений, обтекание крыла получается более плавным и тенденция к формированию срыва уменьшается.

Угол атаки (УА), Angle of Attack (AoA)

Основное понятие аэродинамики. Углом атаки профиля крыла называется угол, под которым профиль обдувается набегающим потоком воздуха. В нормальной ситуации УА не должен превышать 12-15 град, в противном случае возникает срыв потока , т.е. образование турбулентных “бурунчиков” за крылом, как в быстром ручье, если поставить ладонь не вдоль, а поперек потока воды. Срыв приводит к потере подъемной силы на крыле и сваливанию самолета.

На "небольших" самолетах (включая Як-40, Ту-134) выпуск закрылков обычно приводит к “вспуханию” - самолет немного увеличивает вертикальную скорость и задирает нос. На "больших" самолетах стоят системы улучшения устойчивости и управляемости , которые автоматически парируют возникающий момент опусканием носа. Такая система есть на Ту-154 поэтому там "вспухание" невелико (кроме того, там момент выпуска закрылков совмещено с моментом перекладки стабилизатора, который создает противоположный момент). На Ту-134 пилоту приходится гасить увеличение подъемной силы вручаную отклоняя штурвальную колонку от себя. В любом случае, для уменьшения "вспухания", закрылки принято выпускать в два или три приема - обычно сначала на 20-25, потом на 30-45 градусов.

Предкрылки (slats)

Кроме закрылков, почти все транспортные самолеты также имеют предкрылки , которые установлены в передней части крыла, и автоматически отклоняются вниз одновременно с закрылками (пилот о них почти не думает). Принципиально они выполняет ту же функцию, что и закрылки. Отличие состоит в следующим:

  1. На больших углах атаки, отклоненные вниз предкрылки как крючком цепляются за набегающий поток воздуха, отклоняя его вниз вдоль профиля. В результате, предкрылки уменьшают угол атаки остальной части крыла и откладывают момент сваливания на большие углы атаки.
  2. Предкрылки обычно имеют меньший размер, а значит и меньшее лобовое сопротивление.

В целом, выпуск как закрылков так и предкрылков сводится к увеличению кривизны профиля крыла, что позволяет сильнее отклонять вниз набегающий поток воздуха, а значит увеличивать подъемную силу.

Насколько до сих пор известно, предкрылки отдельно в аir-файле не выделены.

Чтобы понять, на фига на самолетах применяется такая сложная механизация, понаблюдайте за приземлением птиц. Часто можно обратить внимание, как голуби и им подобные вороны садятся сильно распушив крылья, поджимая хвост и стабилизатор под себя, пытаясь получить профиль крыла большой кривизны и создать хорошую воздушную подушку. Это и есть выпуск закрылков и предкрылков.

Механизация B-747 на посадке

Интерцепторы (spoilers)

Интерцепторы , они же спойлеры представляют собой отклоняемые тормозные щитки на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъемную силу (в отличие от закрылков и предкрылков). Поэтому интерцепторы (особенно на "илах") также называют гасителями подъемной силы .

Интерцепторы - это очень широкое понятие, в которое напичкано много всяких разновидностей гасителей, и на разных типах они могут называться по-разному и располагаться в разных местах.

В качестве примера рассмотрим крыло самолета Ту-154, на котором применяются три типа интерцепторов:

1) внешние элерон-интерцепторы (spoilerons, roll spoilers)

Элерон-интерцепторы представляют собой дополнение к элеронам. Они отклоняются несимметрично. Например на Ту-154, при отклонении левого элерона вверх на угол до 20 град, левый элерон-интерцептор автоматически отклоняются вверх на угол до 45 град. В результате подъемная сила на левом полукрыле уменьшается, и самолет кренится влево. То же самое для правого полукрыла.

Почему нельзя обойтись только одними элеронами?

Дело в том, что чтобы создать момент крена на большом самолете, нужна большая площадь отклоняемых элеронов. Но, поскольку реактивные самолеты летают на скоростях близких к звуковым, они должны иметь тонкий профиль крыла, который бы не создавал слишком большого сопротивления. Применение больших элеронов приводило бы к его скручиванию и всяким нехорошим явлениям типа реверса элеронов (такое, например, может иметь место быть на Ту-134). Поэтому нужен способ распределить нагрузку на крыло более равномерно. Для этого и используются элерон-интерцепторы.- щитки, установленные на верхней поверхности, которые при отклонении вверх, уменьшают подъемную силу на данном полукрыле, и "топят" его вниз. Скорость вращения по крену при этом значительно возрастает.

Пилот не задумывается об элерон-интерцепторах, с его точки зрения, все происходит автоматически.

В air-файле элерон-интерцепторы, в принципе, предусмотрены.

2) средние интерцепторы (spoilers, speed brakes)

Средние интерцепторы это то, что обычно понимают под просто "интерцепторами" или "спойлерами" - т.е. "воздушные тормоза". Симметричное задействование интерцепторов на обеих половинах крыла приводит к резкому уменьшению подъемной силы и торможению самолета. После выпуска "воздушных тормозов" самолет сбалансируется на большем угле атаки, начнет тормозиться за счет возросшего сопротивления и плавно снижаться.

На Ту-154 средние интерцепторы отклоняются на произвольный угол до 45 град с помощью рычага на среднем пульте пилотов. Это к вопросу, где у самолета стоп-кран.

На Ту-154 внешние и средние интерцепторы это конструктивно разные элементы, но на других самолетах "воздушные тормоза" могут быть конструктивно совмещены с элерон-интерцепторами. Например, на Ил-76 интерцепторы обычно работают в элеронном режиме (с отклонением на угол до 20 град), а при необходимости - в тормозном (с отклонением на угол до 40 град).

Выпускать средние интерцепторы при заходе на посадку не надо. Вообще-то, выпуск интерцепторов после выпуска шасси обычно запрещен. В нормальной ситуации, интерцепторы выпускаются для более быстрого снижения с эшелона с вертикальной скоростью до 15 м/c и после после приземления самолета. Кроме того, они могут применяться при прерванном взлете и экстренном снижении.

Бывает, что "виртуальщики" при заходе на посадку забывают убрать газ, и держат режим чуть ли не на взлетном, пытаясь вписаться в схему посадки с очень высокой скоростью, вызывая гневные вопли диспетчера в стиле “Maximum speed below ten thousand feet is 200 knots!” В таких случаях можно кратковременно выпустить средние интерцепторы, но в реальности, это вряд ли приведет к чему-нибудь хорошему. Лучше пользоваться таким грубым методом гашения скорости заблаговременно - только на снижении, причем не всегда обязательно выпускать интерцепторы на полный угол.

3) внутренние интерцепторы (ground spoilers)

Также "тормозные щитки"

Расположены на верхней поверхности во внутренней (корневой) части крыла между фюзеляжем и гондолами шасси. У Ту-154 автоматически отклоняются на угол 50 град после приземления при обжатии основных аморстоек шасси, скорости более 100 км/ч и РУД-ах в положении "малый газ" или "реверс". Одновременно отклоняются и средние интерцепторы..

Внутренние интерцепторы предназначены для гашения подъемной силы после приземления или при прерваном взлете. Как и другие типы интерцепторов, они не столько гасят скорость, сколько гасят подъемную силу крыла, что приводит к увеличению нагрузки на колеса и улучшению сцепления колес с поверхностью. Благодаря этому после выпуска внутренних интерцепторов можно переходить к торможению с помощью колес.

На Ту-134 тормозные щитки - это единственный тип интерцепторов.

В симуляторе внутренние интерцепторы либо отсутствуют, либо воссоздаются достаточно условно.

Балансировка по тангажу

Большие самолеты имеют ряд особенностей управления по тангажу, о которых нельзя не упомянуть. Триммирование, центровка, балансировка, перекладка стабилизатора, расход штурвальной колонки. Рассмотрим эти вопросы более подробно.

Тангаж (pitch)

Тангаж (pitch) - угловое движение летательного аппарата относительно поперечной оси инерции, а проще говоря "задир". У моряков эта фигня называется "дифферент". Тангаж противопоставлен крену (bank) и рысканию (yaw) , которые соответственно характеризуют положения ЛА при его вращении вокруг продольной и вертикальной оси. Соответственно различают углы тангажа, крена и рысканья (иногда их называют углы Эйлера). Термин "рысканье" можно заменять словом "курс", например говорят "в канале курса".

Отличие угла тангажа от угла атаки, надеюсь объяснять нет необходимости... Когда самолет падает совершенно плашмя, как утюг, угол атаки у него будет 90 град, а угол тангажа будет близок к нулю. Наоборот, когда истребитель идет в наборе, на форсаже, с хорошей скоростью, у него угол тангажа может быть 20 град, а угол атаки, скажем, всего 5 град.

Триммирование

Чтобы обеспечить нормальное пилотирование, усилие на штурвале должно быть ощутимым, в противном случае, любое случайное отклонение могло бы ввести самолет в какой-нибудь нехороший штопор. Собственно говоря, именно поэтому на тяжелых самолетах, не предназначенных для выполнения резких маневров, обычно применяются штурвалы, а не ручки - их не так просто случайно отклонить по крену. (Исключение составляет Airbus, который предпочитает джойстики.)

Понятно, что при затяжеленном управлении бицепсы у пилота будут постепенно развиваться довольно приличные, более того, если самолет разбалансирован по усилиям его трудно пилотировать, т.к. любое ослабление усилия толкнет штурвальную колонку (ШК) не туда, куда надо. Поэтому, чтобы в процессе выполнения полета, летчики могли иногда хлопнуть стюардессу Катьку по заднице, на самолетах устанавливают триммеры.

Триммер - устройство, которое тем или иным способом фиксирует штурвал (ручку управления) в заданном положении, дабы папелац мог снижаться, набирать высоту и лететь в горизонтальном полете и т.д. без приложения усилий к штурвальной колонке.

В результате триммирования, точка, в которую тянет штурвал (ручку), будет не совпадать с нейтральным положением для данного руля. Чем дальше от положения триммирования, тем большие усилия приходится прикладывать, чтобы удержать штурвал (ручку) в заданном положении.

Чаще всего, под триммером имеют в виду триммер в канале тангажа - т.е. триммер руля высоты (РВ). Тем не менее, на больших самолетах триммеры на всякий случай, ставят во всех трех каналах - там они обычно выполняют вспомогательную роль. Например, в канале крена триммирование может применятся при продольной разбалансировки самолета из-за несимметричной выработки топлива из крыльевых баков, т.е. когда одно крыло перетягивает другое. В канале курса - при отказе двигателя, чтобы самолет не рыскал в сторону, когда один двигатель не работает. И т.д.

Триммирование можно технически реализовать следующими способами:

1) с помощью отдельного аэродинамического триммера , как на Ту-134- т.е. маленького "рулька" на руле высоты, который удерживают основной руль в заданном положении с помощью аэродинамической компенсации, т.е. используя силу набегающего потока. На Ту-134 для управления таким триммером используется колесо триммера , на которое наматывается трос, идущий к РВ.

2) с помощью МЭТ (механизма эффекта триммирования) , как на Ту-154 - т.е. просто регулируя затяжку в системе пружин (правильнее сказать, пружинных загружателей ), которые чисто механически удерживает штурвальную колонку в заданном положении. Когда шток МЭТ перемещается вперед-назад, загружатели то ослабляются, то натягиваются. Для управления МЭТ используются небольшие нажимные переключатели на рукоятках штурвалов, при включении которых, шток МЭТ, а за ним и штурвальная колонка медленно перемещаются в заданное положение. Аэродинамические триммеры как на Ту-134, на Ту-154 отсутствуют.

3) с использованием переставного стабилизатора , как на большинстве западных типов (см ниже)

В симуляторе трудно воссоздать настоящий триммер руля высоты, для этого придется использовать навороченный джойстик с эффектом триммирования, потому что, то, что в MSFS называется триммером, по сути, не стоит воспринимать как таковой - правильнее было бы замазать джойстик пластилином или жевачкой или просто положить мышь на стол (в FS98) - вот вам и триммер. Надо сказать, что управление это вообще больное место всех симуляторов. Даже если купить самый навороченный штурвал и систему педалей, оно все равно, скорее всего, будет далековато от реального. Имитация она и есть имитация, потому что, чтобы получить абсолютно точную копию настоящего самолета нужно затратить столько же усилий и переработать столько же информации, сколько и для того, чтобы построить настоящий самолет...

Центровка (CG)

Центровка воздушного судна (Center of Gravity (CG) position) - положение центра тяжести, измеряемое в процентах длины так называемой средней аэродинамической хорды (САХ, Mean Aerodynamic Chord, MAC) - т.е. хорды условного прямоугольного крыла, равноценного данному крылу, и имеющее с ним одинаковую площадь.

Хорда - отрезок прямой, соединяющий переднюю и заднюю кромку профиля крыла.

положение центра тяжести 25% САХ

Длину средней аэродинамической хорды находят интегрированием по длинам хорд вдоль всех профилей полукрыла. Грубо говоря, САХ характеризуют наиболее распространенный, наиболее вероятный профиль крыла. т.е. предполагается, что все крыло со всем его разнобоем профилей можно заменить одним единственном усредненным профилем с одной единственной усредненной хордой - САХ.

Чтобы найти положение САХ, зная его длину, нужно пересечь САХ с контуром реального крыла и посмотреть, где находится начало полученного отрезка. Эта точка (0% САХ) и будет служить точкой отсчета для определения центровки.

Разумеется, транспортный самолет не может иметь постоянную центровку. Она будет меняться от вылета к вылету из-за перемещений грузов, изменения количества пассажиров, а также в процессе полета по мере выработки топлива. Для каждого самолета определен допустимый диапазон центровок, при котором обеспечивается его хорошая устойчивость и управляемость. Обычно различают переднюю (для Ту-154Б - 21-28%), среднюю (28-35%) и заднюю (35-50%) центровки - для других типов цифры будут несколько отличаться.

Центровка пустого самолета сильно отличается от центровки заправленного самолета со всеми грузами и пассажирами, и для ее расчета перед вылетом заполняется специальный центровочный график .

Пустой Ту-154Б имеет центровку порядка 49-50% САХ, при том, что при 52,5% он уже опрокидывается на хвост (двигатели на хвосте перетягивают). Поэтому под хвостовой частью фюзеляжа в некоторых случаях необходимо устанавливать страховочную штангу.

Балансировка в полете

У самолета со стреловидным крылом центр приложения подъемной силы на крыле расположен в точке примерно 50-60% САХ, т.е. позади центра тяжести, который в полете обычно располагается в районе 20-30 % САХ.

В результате, в горизонтальном полете на крыле возникает рычаг подъемной силы , который хочет опрокинуть самолет на нос, т.е. в нормальной ситуации самолет находится под действием пикирующего момента .

Чтобы избежать всего этого, в течении всего полета придется парировать возникающий пикирующий момент балансировочным отклонением РВ , т.е. отклонение руля высоты не будет равно нулю даже в горизонтальном полете.

В основном, чтобы удержать самолет от "клевка" нужно будет создавать кабрирующий момент , т.е. РВ нужно будет отклоняться вверх.

Кабрировать - от фр. cabrer , "ставить на дыбы".

Всегда только вверх? Нет, не всегда.

При увеличении скорости, скоростной напор увеличится, а значит пропорционально возрастет суммарная подъемная сила на крыле, на стабилизаторе и на руле высоты

F под = F под1 – F под2 – F под3

Но сила тяжести останется прежней, а значит самолет перейдет в набор. Чтобы снова сбалансировать папелац в горизонтальном полете, придется опустить руль высоты пониже (отдать штурвал от себя), т.е. уменьшить слагаемое F под3 . Тогда нос опустится, и самолет снова сбалансируется в горизонтальном полете, но уже на меньшем угле атаки.

Таким образом, для каждой скорости у нас будет свое балансировочное отклонение РВ - мы получим ажно целую балансировочную кривую (зависимость отклонения РВ от скорости полета). На больших скоростях, придется отдавать штурвальную колонку от себя (РВ вниз), чтобы удержать самик от кабрирования, на малых скоростях придется брать штурвальную колонку на себя (РВ вверх), чтобы удержать самик от пикирования . Штурвал и руль высоты будут находится в нейтральном положении только на какой-то одной определенной приборной скорости (около 490 км/ч для Ту-154Б).

Стабилизатор (Horizontal Stabilizer)

Кроме того, как видно из приведенной схемы, самолет можно балансировать не только рулем высоты, но и переставным стабилизатором (слагаемое Fпод2). Такой стабилизатор с помощью специального механизма может целиком устанавливаться на новый угол. Эффективность такой перекладки будет примерно в 3 раза выше - т.е. 3 град отклонения РВ будут соответствовать 1 град отклонения стабилизатора, т.к. его площадь горизонтального стабилизатора у "тушки" примерно в 3 раза больше площади РВ.

В чем преимущество использования переставного стабилизатора? Прежде всего в том, что при этом уменьшается расход руля высоты . Дело в том, что иногда из-за слишком передней центровки для удержания самолета на определенном угле атаки приходится использовать весь ход штурвальной колонки - пилот выбрал управление полностью на себя, и дальше самолет уже не заманишь вверх никакой морковкой. Это особенно может иметь место на посадке с предельно передней центровкой, когда при попытке ухода на второй круг, руля высоты может не хватить. Собственно говоря, значение предельно передней центровки и устанавливаются из расчета, чтобы располагаемого отклонения руля высоты хватало на всех режимах полета.

Поскольку РВ отклоняется относительно стабилизатора, то нетрудно видеть, что применение переставного стабилизатора уменьшит расход штурвала и увеличит доступный диапазон центровок и доступных скоростей . А значит можно будет взять больше грузов и расположить их более удобным способом.

В горизонтальном полете на эшелоне стабилизатор Ту-154 находится под углом -1.5 град на кабрирование по отношению к фюзеляжу, т.е. почти горизонтально. На взлете и на посадке , он перекладывается дальше на кабрирование на угол до -7 град относительно фюзеляжа, чтобы создать достаточный угол атаки для поддержания самолета в горизонтальном полете на малой скорости.

Особенностью Ту-154 является то, что перестановка стабилизатора осуществляется только на взлете и на посадке , а в полете он убирается в положение -1.5 (которое считается нулевым), и самолет тогда балансируется одним рулем высоты.

При этом, для удобства экипажа и по ряду других причин, перекладка совмещена с выпуском закрылков и предкрылков, т.е. при переводе рукоятки закрылков из положения 0 в положение на выпуск, автоматически выпускаются предкрылки и стабилизатор перекладывается в согласованное положение. При уборке закрылков после взлета - то же самое, в обратном порядке.

Приведем таблицу, которая висит в кабине экипажа, чтобы постоянно ему напоминать, что у них там блин на фиг выпускается...

Таким образом, все происходит само собой. На круге перед посадкой на скорости 400 км/ч экипаж только должен проверить соответствует ли балансировочное отклонение РВ положению задатчика стабилизатора и, если нет, то устанавить задатчик в нужное положение. Скажем, стрелка указателя положения РВ в зеленом секторе, значит задатчик ставим на зеленое "П" - все достаточно просто и не требует значительных умственных усилий...

При отказах автоматики все выпуски и перекладки механизации можно проделать и в ручном режиме. Например, если речь идет о стабилизаторе, нужно откинуть колпак слева на фото и переставить стабилизатор в согласованное положение.

На других типах ВС, эта система работает иначе. Например на Як-42, MD-83, B-747 (затрудняюсь сказать за всю Одессу, но так должно быть на большинстве западных самолетов) стабилизатор отклоняется в течение всего полета и полностью заменяет собой триммер . Такая система более совершенна, т.к позволяет уменьшить сопротивление в полете, поскольку стабилизатор из-за большой площади отклоняется на меньшие углы, чем РВ.

На Як-40, Ту-134 стабилизатор также обычно регулируется независимо от механизации крыла.

Теперь об MSFS. В симуляторе мы имеем ситуацию "триммирующего стабилизатора", как на западных типах. Отдельного виртуального триммера в МSFS нет. Та прямоугольная штучка (как на "цесссне"), которая у микрософт называется "триммером" на самом деле является стабилизатором, что заметно, по независимости ее работы от РВ.

Почему так? Вероятно, все дело в том, что изначально (в конце 80-х) FS использовался как программная база для полнофункциональных тренажеров, на которых стояли реальные штурвальные колонки и реальные МЭТ-ы. Когда МS купила (сперла?) FS, она не стала глубоко вникать в особенности его работы (а возможно, даже не имела к нему полного описания), поэтому стабилизатор стал называться триммером. По крайней мере, такое предположение хочется сделать, изучая MS+FS, ведь описание к air-файлу так и не было опубликовано, а по качеству дефолтных моделей и ряду других признаков можно сделать вывод, что микрософт и само в нем не особо разбирается.

В случае Ту-154, вероятно, следует установить микрософтовский триммер один раз перед посадкой в горизонтальном полете, чтобы индикатор руля высоты был приблизительно в нейтральном положении, и больше к нему не возвращаться, а работать только триммером джойстика, которого ни у кого нет... Или работать c "прямоугольной штучкой", закрывать глаза и повторять про себя: "Это не стабилизатор, это не стабилизатор...."

Автомат тяги (Auto Throttle)

В штурвальном режиме КВС или 2П управляет двигателями с помощью РУД-ов (рычагов управления двигателями) на среднем пульте или подавая команды бортинженеру: "Режим такой-то"

Иногда бывает удобно управлять двигателями не вручную, а с помощью автомата тяги (auto throttle, АТ) , который старается удержать скорость в допустимых пределах, автоматически регулируя режим двигателей.

Включите АТ (клавиша Shift R), задайте нужную скорость на УС-И (указатель скорости), и автоматика будет пытаться выдерживать ее без вмешательства пилота. На Ту-154 скорость при включенном АТ-6-2 можно регулировать двумя способами 1) вращая кремальеру на левом либо на правом УС-И 2) вращая регулятор на ПН-6 (=пультик СТУ и автомата тяги).

Разновидности систем посадки

Различают визуальный заход и заход по приборам .

Чисто визуальный заход на посадку на больших самолетах применяется редко и может вызвать трудности даже у опытного экипажа. Поэтому обычно заход осуществляется по приборам , т.е. с применением радиотехнических систем под управлением и контролем диспетчера УВД .

Управление воздушным движением (УВД, Air Traffic Control, ATC) - управление движением воздушных судов в полете и на площади маневрирования аэродрома.

Радиотехнические системы посадки

Рассмотрим заходы с применением радиотехнических систем посадки. Их можно подразделить на следующие типы:

“по ОСП” , т.е. с использованием ДПРМ и БПРМ

“по РМС” , т.е. с использованием ILS

“по РСП” , т.е. по локатору.

Заход по ОСП

Также известен как "заход по приводам" .

ОСП (оборудование системы посадки) - комплекс наземных средств, включающих две приводных радиостанции с маркерными радиомаяками, а также светотехническое оборудование (СТО) , установленное на аэродроме по утвержденной типовой схеме.

Конкретно, ОСП включает в себя

"дальний" (приводной радиомаяк) (ДПРМ, Outer Marker, OM) - дальнюю приводную радиостанцию со своим маркером, которая располагается в 4000 (+/- 200) м от торца ВПП. При пролете маркера в кабине срабатывает световая и звуковая сигнализация. Морзянка cигнала в системе ILS имеет вид “тире-тире-тире...“.

"ближний" (приводной радиомаяк) (БПРМ, Middle Marker, MM) - ближнюю приводную радиостанцию тоже со своим маркером, которая располагается в 1050 (+/- 150) м от торца ВПП. Морзянка в системе ILS имеет вид “тире-точка-...“

Приводные радиостанции работают в диапазоне 150-1300 кГц.

При полете по кругу, первый и второй комплекты автоматического радиокомпаса (АРК, Automatic Direction Finder, ADF) настраиваются на частоты ДПРМ и БПРМ- при этом одна стрелка на указателе АРК будет показывать на ДПРМ, вторая на БПРМ.

Напомним, что стрелка указателя АРК всегда показывает на радиостанцию подобно тому, как стрелка магнитного компаса, всегда показывает на север. Следовательно, при полете по схеме, момент начала четвертого разворота можно определить по курсовому углу радиостанции (КУР) . Скажем, если ДПРМ радиостанция точно слева, то КУР=270 град. Если мы хотим развернуться на нее, то разворот нужно начинать на 10-15 град раньше (т.е. при КУР=280...285 град). Пролет над радиостанцией будет сопровождаться разворотом стрелки на 180 град.

Таким образом, при полете по кругу курсовой угол ДПРМ помогает определить моменты начала выполнения разворотов на круге. В этом плане ДПРМ представляет собой что-то вроде точки отсчета, относительно которой рассчитываются многие действия при заходе на посадку.

К радиостанции также присобачен маркер , или маркерный радиомаяк - передатчик, посылающий вверх узконаправленный сигнал, который при пролете над ним воспринимается самолетными приемниками и заставляет срабатывать индикаторную лампочку и электрозвонок. Благодаря этому, зная на какой высоте следует проходить ДПРМ и БПРМ (обычно это 200 и 60 м соответственно) можно получить две точки, по которым можно построить предпосадочную прямую.

На западе, на аэродромах категории II и III cо сложным рельефом местности на расстоянии 75..100 м от торца ВПП устанавливают еще и внутренний радиомаркер (Inner Marker, IM) (c морзянкой “точка-точка-точка....“), который используется как дополнительное напоминание экипажу о приближении к моменту начала визуального наведения и необходимости принятия решения о посадке.

Комплекс ОСП относится к упрощенным системам посадки, он должен обеспечивать экипажу воздушного судна привод в район аэродрома и маневр снижения до высоты визуального обнаружения ВПП. На практике он играет вспомогательное значение и обычно не отменяет необходимость использования системы ILS или посадочного радиолокатора. Чисто по ОСП заходят только при отсутствии более совершенных систем посадки.

При заходе только по ОСП горизонтальная видимость должна составлять не менее 1800 м, вертикальная не менее 120 м. Если этот метеоминимум не соблюдается, необходимо уйти на запасной аэродром .

Обратите внимание, что ДПРМ и БПРМ на разных концах полосы имеют одну и ту же частоту. В нормальной ситуации, радиостанции на другом конце должны быть выключены, но в симе это не так, поэтому при полете по кругу, АРК часто начинает глючить, цепляя то одну радиостанцию, то другую.

Заход по РМС

Также говорят "заход по системе" . В общем-то, это то же самое, что и заход по ILS. (см.также статью Дмитрия Просько на этом сайте)

В русскоязычной терминологии радиомаячная система посадки (РМС) используется как обобщающий термин, который включает в себя различные разновидности систем посадки- в частности, ILS (Instrument Landing System) (как западный стандарт) и СП-70, СП-75, СП-80 (как отечественные стандарты).

Принципы захода по РМС достаточно просты.

Наземная часть РМС состоит из двух радиомаяков - курсового радиомаяка (КРМ) и глиссадного радиомаяка (ГРМ) , которые излучают два наклонных луча (равносигнальные зоны) в вертикальной и горизонтальной плоскости. Пересечение этих зон образует траекторию захода на посадку. Самолетные приемные устройства определяют положение самолета относительно этой траектории и выдают управляющие сигналы на командно-пилотажный прибор ПКП-1 (проще говоря, на авиагоризонт) и планово-навигационный прибор ПНП-1 (проще говоря, на указатель курса).

Если частота настроена правильно, то при подходе к полосе пилот увидит на большом авиагоризонте две перемещающихся линии - вертикальную командную стрелку курса и горизонтальную командную стрелку глиссады , а также два треугольных индекса, обозначающих положение ВС относительно расчетной траектории.

Механизация крыла

Выпущенные закрылки и предкрылки.

Выпущенные предкрылки.

Механиза́ция крыла́ - совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и т. д.

Закрылки

Закрылки - отклоняемые поверхности, симметрично расположенные на задней кромке крыла. Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полёте на малых скоростях. Существует большое число типов конструкции закрылков:

Принцип работы закрылков заключается в том, что при их выпуске увеличивается кривизна профиля и (в случае выдвижных закрылков , которые также называют закрылками Фаулера ) площадь поверхности крыла, следовательно, увеличивается и подъёмная сила . Возросшая подъёмная сила позволяет летательным аппаратам лететь без сваливания при меньшей скорости. Таким образом, выпуск закрылков является эффективным способом снизить взлётную и посадочную скорости. Второе следствие выпуска закрылков - это увеличение аэродинамического сопротивления . Если при посадке возросшее лобовое сопротивление способствует торможению самолета, то при взлёте дополнительное лобовое сопротивление отнимает часть тяги двигателей. Поэтому на взлёте закрылки выпускаются всегда на меньший угол, нежели при посадке. Третье следствие выпуска закрылков - продольная перебалансировка самолёта из-за возникновения дополнительного продольного момента. Это усложняет управление самолётом (на многих современных самолётах пикирующий момент при выпуске закрылков компенсируется перестановкой стабилизатора на некоторый отрицательный угол). Закрылки, образующие при выпуске профилированные щели, называют щелевыми . Закрылки могут состоять из нескольких секций, образуя несколько щелей (как правило, от одной до трёх).

К примеру, на отечественном Ту-154М применяются двухщелевые закрылки, а на Ту-154Б - трёхщелевые. Наличие щели позволяет потоку перетекать из области повышенного давления (нижняя поверхность крыла) в область пониженного давления (верхняя поверхность крыла). Щели спрофилированы так, чтобы вытекающая из них струя была направлена по касательной к верхней поверхности, а сечение щели должно плавно сужаться для увеличения скорости потока. Пройдя через щель, струя с высокой энергией взаимодействует с «вялым» пограничным слоем и препятствует образованию завихрений и отрыву потока. Это мероприятие и позволяет «отодвинуть» срыв потока на верхней поверхности крыла на бо́льшие углы атаки и бо́льшие значения подъемной силы.

Флапероны

Флапероны , или «зависающие элероны» - элероны , которые могут выполнять также функцию закрылков при их синфазном отклонении вниз. Широко применяются в сверхлёгких самолётах и радиоуправляемых авиамоделях при полётах на малых скоростях, а также на взлёте и посадке. Иногда применяются на более тяжелых самолётах (например, Су-27). Основное достоинство флаперонов - это простота реализации на базе уже имеющихся элеронов и сервоприводов .

Предкрылки

Предкрылки - отклоняемые поверхности, установленные на передней кромке крыла. При отклонении образуют щель, аналогичную таковой у щелевых закрылков. Предкрылки, не образующие щели, называются отклоняемыми носками. Как правило, предкрылки автоматически отклоняются одновременно с закрылками, но могут и управляться независимо.

В целом, эффект предкрылков заключается в увеличении допустимого угла атаки, то есть срыв потока с верхней поверхности крыла происходит при бо́льшем угле атаки.

Помимо простых, существуют так называемые адаптивные предкрылки . Адаптивные предкрылки автоматически отклоняются для обеспечения оптимальных аэродинамических характеристик крыла в течение всего полёта. Также обеспечивается управляемость по крену при больших углах атаки с помощью асинхронного управления адаптивными предкрылками.

Интерцепторы

Выпуск левого элерон-интерцептора при парировании правого крена

Интерцепторы (спойлеры) - отклоняемые или выпускаемые в поток поверхности на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъёмную силу. Поэтому интерцепторы также называют органами непосредственного управления подъёмной силой.

В зависимости от предназначения и площади поверхности консоли, расположения её на крыле и т. д. интерцепторы делят на:

Элерон-интерцепторы

Элерон-интерцепторы представляют собой дополнение к элеронам и используются в основном для управления по крену. Они отклоняются несимметрично. Например, на Ту-154 при отклонении левого элерона вверх на угол до 20°, элерон-интерцептор на этой же консоли автоматически отклоняется вверх на угол до 45°. В результате подъёмная сила на левой консоли крыла уменьшается, и самолёт кренится влево.

У некоторых самолетов элерон-интерцепторы могут являться главным (либо резервным) органом управления по крену .

Спойлеры

Выпущенные спойлеры

Спойлеры (многофункциональные интерцепторы) - гасители подъемной силы.

Симметричное задействование интерцепторов на обеих консолях крыла приводит к резкому уменьшению подъёмной силы и торможению самолёта. После выпуска самолёт балансируется на большем угле атаки, начинает тормозиться за счёт возросшего сопротивления и плавно снижаться. Возможно изменение вертикальной скорости без изменения угла тангажа . То есть при одновременном выпуске интерцепторы используются в качестве воздушных тормозов.

Интерцепторы также активно используются для гашения подъёмной силы после приземления или при прерванном взлёте и для увеличения сопротивления. Необходимо отметить, что они не столько гасят скорость непосредственно, сколько снижают подъёмную силу крыла, что приводит к увеличению нагрузки на колёса и улучшению сцепления колёс с поверхностью. Благодаря этому, после выпуска внутренних интерцепторов можно переходить к торможению с помощью колёс.

См. также

  • Роторный предкрылок - движитель на основе предкрылка
  • Вибрирующий предкрылок - движитель на основе предкрылка
  • Элероны - рули, управляющие креном самолёта.
  • Аэродинамика Боинг 737

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Механизация крыла" в других словарях:

    Комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным слоем на поверхности крыла и (или) изменении кривизны профиля. М. к.… … Энциклопедия техники

    Комплекс устройств, изменяющих подъёмную силу и лобовое сопротивление крыла летательного аппарата. М. к. уменьшает скорость посадки самолёта, а при взлёте облегчает его отрыв от поверхности земли. В зависимости от типа М. к. подъёмную… … Большая советская энциклопедия

    механизация крыла Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    Механизация крыла - устройства (предкрылки, закрылки. щитки и др.) для изменения аэродинамических характеристик крыла в целях уменьшения скорости посадки (отрыва), длины разбега (пробега), а также улучшения манёвренности ЛА в полёте и др … Словарь военных терминов

    Энциклопедия «Авиация»

    энергетическая механизация крыла - Рис. 1. Энергетическая механизация крыла. энергетическая механизация крыла — устройства для увеличения подъёмной силы крыла, принцип действия которых основан на использовании энергии двигателей летательного аппарата или дополнительных… … Энциклопедия «Авиация»

    Устройства для увеличения подъёмной силы крыла, принцип действия которых основан на использовании энергии двигателей ЛА или дополнительных источников мощности. Э. м. к. применяется для улучшения взлётно посадочных и манёвренных характеристик ЛА,… … Энциклопедия техники

Похоже, в расследовании причин катастрофы Ту-154 в Черном море наступает некоторая ясность. Анализ бортовых самописцев и утечки от источников, близких к расследованию, указывают на проблему, очень часто приводившую к трагедиям в воздухе: несинхронное срабатывание закрылков. Осталось понять, кто виноват в случившемся – техника или же экипаж.

К вечеру вторника был завершен предварительный анализ записей черного ящика разбившегося в воскресенье Ту-154. Подтверждается версия об ошибке в технике пилотирования, сообщает осведомленный источник. По его словам, это следует из анализа данных самописца.

«Следовало сперва убрать их наполовину после отрыва, и только после набора скорости – убрать полностью. А «правак» Филиппов безголово убрал их одним махом. И свалил самолет»

При этом ранее СМИ сообщили, что пилоты на последних секундах записи о проблемах с закрылками. В частности, один из пилотов восклицает: «Закрылки, сука!»

Ранее летчик-испытатель Магомед Толбоев в уже , что причиной крушения могли стать проблемы с закрылками. По его словам, в этом случае «самолет мгновенно разворачивается вокруг своей оси». «Ни командир, никто не успеет и слова сказать, их там бросает, как селедку в бочке», – отметил Магомед Толбоев.

Вице-президент Федерации любителей авиации, заслуженный летчик-испытатель СССР Виктор Заболотский уточнял в комментарии изданию Life , что при проблемах с закрылками самолет может стать неуправляемым. «У одного крыла подъемная сила большая, а у второго маленькая, естественно, самолет будет переворачивать», – заявлял он.

Источник «Интерфакса» в оперативном штабе ЧС также сообщил, что у Ту-154 несогласованно сработали закрылки. Несогласованная работа закрылков могла быть, в свою очередь, вызвана либо техническими причинами, либо ошибкой отвечающего за их работу члена экипажа.

Впрочем, пока не расшифрованы записи остальных черных ящиков, эксперты не знают, «где находились руки экипажа» – что делали в роковой момент командир экипажа и второй пилот.

Как поясняют специалисты, прямо перед вторым пилотом стоит рычаг выпуска и уборки закрылков. Командир дает указание: «Убрать закрылки» – и второй пилот убирает. Как именно действовал экипаж, будет ясно позже, но некоторые выводы уже можно сделать.

Заслуженный пилот СССР, бывший замминистра гражданской авиации СССР, президент фонда «Партнер гражданской авиации», сам летавший на Ту-154, Олег Смирнов в разговоре с газетой ВЗГЛЯД подчеркнул, что его первые предположения о причинах крушения самолета тоже были связаны с закрылками. Дело в том, что самолет пропал как раз в той точке полета, где происходит уборка закрылков.

«Закрылки выдвигаются из-под крыла, увеличивают его площадь и одновременно изменяют кривизну потока. Это делается, чтобы увеличить подъемную силу и уменьшить скорость. Закрылки выпускаются и перед взлетом, и при посадке, чтобы произвести ее на меньшей скорости», – пояснил Смирнов.

После взлета по первой команде командира убираются шасси, чтобы пропало колоссальное аэродинамическое лобовое сопротивление, пояснил эксперт. «Второй командой убираются закрылки, чтобы крыло стало пригодным для полета на большой скорости. Принципиально важно, чтобы они убирались синхронно. В истории авиации много катастроф происходило по причине несинхронной уборки закрылков. При несинхронной работе закрылков получается, что одно крыло имеет одну величину и подъемную силу, а другое – иную. И не хватает рулей, чтобы удержать машину горизонтально, самолет буквально переворачивается на спину», – пояснил эксперт.

Смирнов подчеркнул, что на Ту-154 установлена автоматика, которая в случае несинхронного срабатывания прекращает движение закрылков. Обычно экипаж не виноват в несинхронном убирании закрылков, за это отвечает исключительно техника.

«Но если появилась эта аудиозапись, значит, автоматика не сработала. Это все так быстро происходит, что не оставляет надежд выкроить доли секунды, чтобы нажать на кнопку передатчика и сообщить о случившемся. Командир корабля дает команду на выпуск. У бортинженера один рычаг. Он его перемещает, а закрылки идут справа и слева. Если выдвижение или уборка закрылков происходит несинхронно, автоматика должна их застопорить», – рассказал он, добавив, что прояснить причины крушения поможет расшифровка параметрического черного ящика, на котором записаны сигналы срабатывания механизмов и возможных сбоев.

«Бывает, техника подводит, закрылки могут убираться несинхронно, – вторит Смирнову другой источник газеты ВЗГЛЯД, бывший высокопоставленный военный летчик. – Тогда надо тут же их уборку прекратить! Иначе самолет просто завалится в какую-то сторону. Сам я с таким не сталкивался, но у других бывало. Кто успел прекратить уборку, тот жив, кто не успел – тех закопали». Собеседник даже не исключил, что экипаж Ту-154 вообще забыл выпустить закрылки перед взлетом.

Собеседник приводит в пример гибель самолета Ту-95РЦ 25 января 1984 года, экипаж которого возглавлял военный летчик первого класса майор Вымятин.

«Вылетел с аэродрома Оленья на Кольском полуострове. Через 1 минуту 55 секунд в ходе набора высоты на скорости 346 км/ч и высоте 350 м экипаж преждевременно убрал закрылки на малой скорости, – рассказывает источник. – Там следовало сперва убрать их наполовину после отрыва, и только после набора скорости – убрать полностью. А второй пилот Филиппов убрал их одним махом. Штурман сказал командиру – доворот на курс. Командир ввел машину в крен и свалил самолет. Все погибли. 92 тонны керосина догорали два дня в сугробе. Нечто подобное могло быть и здесь».

В случае ошибки пилотов закономерно возникает вопрос о квалификации экипажа.

Ранее сообщалось, что командир разбившегося Ту-154, летчик первого класса Роман Волков имел более трех тысяч часов летной практики. В связи с этим делались выводы, что Волков был опытным пилотом. Однако Олег Смирнов цифру в три тысячи часов налета оценивает скептически, называя ее «курсантской». Налет самого Смирнова – 15 тысяч часов, в том числе и на Ту-154. Есть летчики с 20-тысячными налетами. Смирнов также напомнил, что у каждого типа самолетов есть свои особенности. Кроме того, из цифры налета не ясно, сколько именно полетов совершил летчик на данном типе самолетов и в каком качестве – командира воздушного судна, второго пилота и т. д.

«Если все эти тысячи часов командир летал на этом самолете – это одно дело. А если на других типах, то другое. Самолет самолету рознь. Все зависит от его веса, размеров, размещения двигателей. Ту-154 – оригинальный в плане аэродинамики. У него все три двигателя, каждый из которых весит больше тонны, в хвосте, а это значит – задняя центровка. Здесь иначе работают аэродинамические силы. У каждого самолета есть особенности, их изучаешь при переучивании, и всегда надо держать их в голове. В частности, когда убираешь закрылки, то надо вести себя очень настороженно», – пояснил Олег Смирнов.

 
Статьи по теме:
Продажа вертолетов Bell Радиоуправляемые вертолеты – моделей много, принцип выбора один
США, Япония, Тайвань, Германия и Италия Тип: вертолет общего назначения и непосредственной поддержки Вместимость : пилот и до 14 пассажиров (модификация UH-1H) Семейство вертолетов Bell UH-1, построенное со времени окончания Второй мировой войны в больше
​Путешествие в страну Дорожных знаков
Главным документом, регламентирующим правила поведения на дороге, является ПДД. Что касаемо детей, то значимым знаком является «Осторожно Дети» 1.23 по ПДД. Соблюдение правил очень важно, поскольку, в противном случае, могут возникнуть непоправимые послед
Транспортные средства: классификация
Таблица 4 Классификационный признак Специальный Специализированный По назначению Пожарный Медицинской помощи Охранный Автокраны Уборочный Самосвалы с навесным оборудованием Фургоны с навесным оборудованием Цистерны Контейнеровозы Мусоровозы
Демонтаж «фартука» приборной панели
Многие автолюбители сталкивались с тем, что на ВАЗ-2114 гасла одна из ламп ближнего света. Почему это случается? Ответ достаточно простой – лампочка перегорела и её необходимо заменить. Многие автомобилисты зададутся вопросом – как это сделать? Достаточно