Высокоточный измеритель индуктивности и емкости. Высокоточный измеритель индуктивности и емкости Как замерить индуктивность катушки обычным мультиметром

Начинающим радиолюбителям не стоит полагаться на интуицию, и наедятся на добротность катушек индуктивности, а просто надо взять и проверить их работоспособность. Ничего особо сложного тут нет, и, не смотря на то, что увидеть магнитное поле своими глазами мы пока что не можем проверить работоспособность катушки индуктивности достаточно просто. А как это сделать, вкратце и доступно, расскажет вам статья.

Процедура визуальной проверки катушки индуктивности:

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убе­ждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсут­ствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Процедура электрической проверки катушки индуктивности:

Электрическая проверка катушек индуктивности включает провер­ку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки.

Проверка на обрыв выполняется пробником. Увеличение сопротив­ления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление рав­но нулю. Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется про­верить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

Эта схема измерителя индуктивности построена с использованием микросхемы 74HC14 . Измерителем тут будет стрелочный индикатор. Схема, при всей своей простоте, действительно работает замечательно. Измеритель индуктивности откалиброван в нашем случае для 0-100 мкГн, так как это наиболее популярный диапазон.

Принципиальная схема индуктометра на 74HC14

Аналоговый метод измерения ограничивает его точность, но при самостоятельной намотке катушек для различных радиосхем его хватает.

Принцип действия индуктометра

Принцип работы схемы заключается в том, что если вы генерируете импульсы постоянной частоты и амплитуды, а затем передаёте сигнал через низкочастотный фильтр, в результате чего напряжение постоянного тока будет пропорционально индуктивности.


Частота импульса устанавливается генератором на триггерах Шмидта и состоит из сопротивления обратной связи (2k потенциометр и 3.9k постоянный резистор). 1000 пФ конденсатора на землю, и элементами триггера Шмидта. Ширина импульса пропорциональна индуктивности и обратно пропорциональна сопротивлению. Эта схема подойдёт только для широкополосных катушек. Индуктивности с железными или ферритовыми сердечниками, в следствии высокой проницаемости ферритов, не могут быть точно измерены. Схема вполне линейна, вы можете убедиться в этом, взглянув на график:


Схема подключается к вольтметру с милливольтным измерением, имеющим высокое входное сопротивление, так как устройство не имеет буфера на выходе. Для упрощения конструкции измерителя индуктивности, можно собрать его на металлизированной стороне макетной плате. Все соединения, в том числе земляные соединения, должны быть короткие. Провод будет добавлять значение к измеряемой индуктивности, так что держите его предельно коротким.

Калибровка измерителя индуктивности

Процедура настройки проста: подключите аккумулятор и цифровой вольтметр, подключите известную катушку или дроссель, а затем отрегулируйте потенциометр, пока не получите нужного значения на шкале. Например, используйте 1 мкГн индуктивность и отрегулируйте потенциометр так, чтобы получить 100 мВ на милливольтметре. На фото - измерение 33 мкГн промышленного дросселя.


Генератор с указанными значениями радиоэлементов работает на частоте 173 КГц. Если у вас существенно отличные частоты, попробуйте изменить частоту генератора вышеуказанными компонентами.

Приборы непосредственной оценки и сравнения

К измерительным приборам непосредственной оценки значения измеряемой емкости относятся микрофарадметры , действие которых базируется на зависимости тока или напряжения в цепи переменного тока от значения включенной в нее . Значение емкости определяют по шкале стрелочного измерителя.

Более широко для измерения и индуктивностей применяют уравновешенные мосты переменного тока , позволяющие получить малую погрешность измерения (до 1 %). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы.

Измерение производят балансированием моста в результате попеременной подстройки двух его плеч. Отсчет показаний берется по лимбам рукояток тех плеч, которыми сбалансирован мост.

В качестве примера рассмотрим измерительные мосты, являющиеся основой измерителя индуктивности ЕЗ-3 (рис. 1) и измерителя емкости Е8-3 (рис. 2).

Рис. 1. Схема моста для измерения индуктивности

Рис. 2. Схема моста для измерения емкости с малыми (а) и большими (б) потерями

При балансе моста (рис. 1) индуктивность катушки и ее добротность определяют по формулам Lx = R1R2C2; Qx = wR1C1.

При балансе мостов (рис. 2) измеряемая емкость и сопротивление потерь определяют по формулам

Измерение емкости и индуктивности методом амперметра-вольметра

Для измерения малых емкостей (не более 0,01 - 0,05 мкФ) и высокочастотных катушек индуктивности в диапазоне их рабочих частот широко используют резонансные методы Резонансная схема обычно включает в себя генератор высокой частоты, индуктивно или через емкость связанный с измерительным LС-контуром. В качестве индикаторов резонанса применяют чувствительные высокочастотные приборы, реагирующие на ток или напряжение.

Методом амперметра-вольтметра измеряют сравнительно большие емкости и индуктивности при питании измерительной схемы от источника низкой частоты 50 - 1000 Гц.

Для измерения можно воспользоваться схемами рис. 3.

Рисунок 3. Схемы измерения больших (а) и малых (б) сопротивлений переменному току

По показаниям приборов полное сопротивление

где

из этих выражений можно определить

Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используют схему рис. 4. В этом случае


Рис. 4. Схемы измерения больших (а) и малых (б) сопротивлений методом амперметра - вольтметра

Измерение взаимной индуктивности двух катушек

Это очень точный измеритель индуктивности/емкости на базе микроконтроллера PIC16F628A. Идея реализована на примере точного измерителя индуктивности/емкости .Конструкция устройства немного отличается от аналогичных устройств, найденных в сети Интернет. Целью моего не легкого труда было предоставить простое решение, которое легко собрать с первой попытки. Большинство конструкций данного типа устройств работает не так, как описано в документации, или на них просто недостаточно справочной информации. Наиболее трудной частью проекта было запрограммировать весь математический код с плавающей запятой в память программ размером 2k микроконтроллера 16F628A.

Обычно измеритель индуктивности/емкости представляет собой измеритель частоты, имеющий в составе генератор колебаний, который генерирует колебания и измеряет величины L или C, после чего вычисляется конечный результат. Погрешность частоты составляет 1Гц. Для получения более подробной информации по измерению частоты с помощью синхронизирующих устройств, обратитесь к моей статье о цифровом частотомере.

Теоретические сведения : Внимательно посмотрите на схему; я не использовал язычковое реле, поскольку не нашел его на местном рынке радиокомпонентов. Поэтому я решил сначала использовать полевой МОП-транзистор вместо язычкового реле. Но наилучший результат я получил с помощью обычного NPN-транзистора, такого как BC547. Если вы не доверяете транзисторам, тогда вы сможете добавить язычковое реле самостоятельно. Я использовал внутренний компаратор контроллера для генератора и подсоединил его к источнику внешней синхронизации таймера Timer1 для вычисления частоты. Благодаря этому не понадобилось использовать внешний операционный усилитель Lm311. Реле RL1 использовалось для выбора режима измерения L и C. Измеритель работает на базе четырех основных уравнений, которые представлены ниже:

Для обеих неизвестных величин L и C, обычно применяется равенство 1 и 2. Средние значения F1 мы получаем с помощью LC колебательного контура, затем подсоединяем C cal параллельно колебательному контуру и получаем величину F2.
Сразу после этого,

  1. Для емкости требуется F3 (уравнение 3), оставляя Cx параллельно колебательному контуру, затем вычисляется Cx из уравнения 4
  2. Для индуктивности требуется F3 (уравнение 7), оставляя Lx последовательно колебательному контуру, и c затем вычисляется Lx из уравнения 8

Следовательно, как для индуктивности, так и для емкости, уравнения 1, 2, и уравнения 5, 6 одинаковы.
После получения приблизительных значений индуктивности или емкости, программа автоматически приведет значения к техническим единицам, которые отобразит на жидкокристаллическом дисплее разрешением 16x2.
Если вам тяжело осилить все математические вычисления, тогда лучше оставить их на время и перейти к аппаратным средствам. Для начала выполните процесс калибровки, который разъяснен в следующей главе.

Конструкция:
Точность измерения зависит от состояния ваших компонентов. Два конденсатора, емкостью 33пФ в генераторе должны быть танталовыми (для низкой серии сопротивлений/индуктивностей). Используйте C4, C5 (C cal) полистирольного типа, поскольку зеленые конденсаторы имеют слишком большое отклонение величины. Избегайте использования керамических конденсаторов. Некоторые из них имеют большие затухания.

  1. Сначала проверьте, чтобы все компоненты отлично подходили на свои места в плате.
  2. Запрограммируйте микросхему (16F628A) с помощью Hex файла, указанного ниже на данной странице. Если у вас нет программатора / загрузчика, тогда обратитесь к моей схеме . Его очень легко собрать самостоятельно.
  3. Сначала подайте питание на схему без микросхемы, затем проверьте напряжение на выводе 5, 14 колодки ИС с помощью вольтметра. Если напряжение равно 5В, тогда все отлично.
  4. Поместите микросхему в колодку ИС и подайте питание. Если на жидкокристаллическом дисплее будет повышенная контрастность, тогда увеличьте значение резистора R11 на несколько килоом.

Калибровка:

  1. Закоротите два тестовых проводника и подайте питание на схему. При этом выполнится автоматическая калибровка. Устройство перейдет в режим по умолчанию – режим индуктивности. Дайте несколько минут на "разогрев", затем нажмите кнопку "zero" (нуль) для выполнения форсированной повторной калибровки. Теперь на дисплее должно отображаться значение ind = 0.00 uH (мкГн)
  2. Теперь разомкните два тестовых проводника и подсоедините заранее известную индуктивность, например 10 мкГн или 100 мкГн. Измеритель индуктивности/емкости должен считать приблизительно аналогичное значение (допускается погрешность до +/- 10%).
  3. После этого необходимо настроить измеритель для отображения результата с погрешностью около +/- 1%. Чтобы выполнить это, проверьте что в схеме установлены 4 джампера Jp1 ~ Jp4. Джамперы Jp1 и Jp2 предназначены для увеличения (+) и уменьшения (–) значений. Для увеличения значения сначала установите Jp1 и выполните шаги 1,2, для уменьшения значения установите Jp2 и выполните шаги 1,2.
  4. Если на дисплее отображаются необходимые значения, тогда снимите джамперы. После этого микросхема запомнит калибровку, пока вы не заходите снова внести изменения.
  5. Если у вас все еще не получается получить требуемое значение, установите джампер Jp3, чтобы увидеть величину F1. На дисплее отобразится значение около 503292 с индуктивностью 100мкГн и емкостью 1нФ. Или установите джампер Jp4, чтобы посмотреть значение F2. Если на дисплее ничего не появится, то это означает, что ваш генератор неправильно работает. Еще раз проверьте вашу плату.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Линейный регулятор

LM7805

1 В блокнот
U3 МК PIC 8-бит

PIC16F628A

1 В блокнот
Q1, Q2 Биполярный транзистор

BC547B

2 В блокнот
D1, D3 Выпрямительный диод

1N4001

2 В блокнот
С1, С2, С6, С7 Электролитический конденсатор 10 мкФ 4 В блокнот
С3, С10 Конденсатор 0.1 мкФ 2 В блокнот
С4, С5 Конденсатор 1000 пФ 2 В блокнот
С8, С9 Конденсатор 33 пФ 2 В блокнот
R1, R3, R4 Резистор

100 кОм

3 В блокнот
R2, R14, R15 Резистор

10 кОм

3 В блокнот
R5 Резистор

47 кОм

1 В блокнот
R6 Резистор

1.5 кОм

1 В блокнот
R7, R9-R12 Резистор

1 кОм

5 В блокнот
R8, R13 Резистор

560 Ом

2 В блокнот
LCD1 LCD-дисплей 16х2 LCD 1 В блокнот
Х1 Кварцевый резонатор 16 МГц 1 В блокнот
RL1 Реле 5 В 1

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки . В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.
Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света. Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции. Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно. В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50). Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на . Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

 
Статьи по теме:
Продажа вертолетов Bell Радиоуправляемые вертолеты – моделей много, принцип выбора один
США, Япония, Тайвань, Германия и Италия Тип: вертолет общего назначения и непосредственной поддержки Вместимость : пилот и до 14 пассажиров (модификация UH-1H) Семейство вертолетов Bell UH-1, построенное со времени окончания Второй мировой войны в больше
​Путешествие в страну Дорожных знаков
Главным документом, регламентирующим правила поведения на дороге, является ПДД. Что касаемо детей, то значимым знаком является «Осторожно Дети» 1.23 по ПДД. Соблюдение правил очень важно, поскольку, в противном случае, могут возникнуть непоправимые послед
Транспортные средства: классификация
Таблица 4 Классификационный признак Специальный Специализированный По назначению Пожарный Медицинской помощи Охранный Автокраны Уборочный Самосвалы с навесным оборудованием Фургоны с навесным оборудованием Цистерны Контейнеровозы Мусоровозы
Демонтаж «фартука» приборной панели
Многие автолюбители сталкивались с тем, что на ВАЗ-2114 гасла одна из ламп ближнего света. Почему это случается? Ответ достаточно простой – лампочка перегорела и её необходимо заменить. Многие автомобилисты зададутся вопросом – как это сделать? Достаточно