Конвертер ватт в амперы. Как маркируются аккумуляторы для инструмента

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 киловольт [кВ] = 1000 вольт [В]

Исходная величина

Преобразованная величина

вольт милливольт микровольт нановольт пиковольт киловольт мегавольт гигавольт теравольт ватт на ампер абвольт единица электрического потенциала СГСМ статвольт единица электрического потенциала СГСЭ Планковское напряжение

Оптическая сила в диоптриях и увеличение линзы

Подробнее об электрическом потенциале и напряжении

Общие сведения

Поскольку мы живём в эпоху электричества, многим нам с детства знакомо понятие электрического напряжения: ведь мы порой, исследуя окружающую действительность, получали от него немалый шок, засунув тайком от родителей пару пальцев в розетку питания электрических устройств. Поскольку вы читаете эту статью, ничего особо страшного с вами не произошло - трудно жить в эпоху электричества и не познакомится с ним накоротке. С понятием электрического потенциала дело обстоит несколько сложнее.

Будучи математической абстракцией, электрический потенциал лучше всего по аналогии описывается действием гравитации - математические формулы абсолютно схожи, за исключением того, не существуют отрицательные гравитационные заряды, так как масса всегда положительная и в то же время электрические заряды бывают как положительными, так и отрицательными; электрические заряды могут как притягиваться, так и отталкиваться. В результате же действия гравитационных сил тела могут только притягиваться, но не могут отталкиваться. Если бы мы смогли разобраться с отрицательной массой, мы бы овладели антигравитацией.

Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством. Вкратце понятие электрического потенциала описывает взаимодействие различных по знаку или одинаковых по знаку зарядов или групп таких зарядов.

Из школьного курса физики и из повседневного опыта, мы знаем, что поднимаясь в гору, мы преодолеваем силу притяжения Земли и, тем самым, совершаем работу против сил притяжения, действующих в потенциальном гравитационном поле. Поскольку мы обладаем некоторой массой, Земля старается понизить наш потенциал - стащить нас вниз, что мы с удовольствием позволяем ей, стремительно катаясь на горных лыжах и сноубордах. Аналогично, электрическое потенциальное поле старается сблизить разноимённые заряды и оттолкнуть одноимённые.

Отсюда следует вывод, что каждое электрически заряженное тело старается понизить свой потенциал, приблизившись как можно ближе к мощному источнику электрического поля противоположного знака, если никакие силы этому не препятствуют. В случае одноимённых зарядов каждое электрически заряженное тело старается понизить свой потенциал, удалившись как можно дальше от мощного источника электрического поля одинакового знака, если никакие силы этому не препятствуют. А если они препятствуют, то потенциал не меняется - пока вы стоите на ровном месте на вершине горы, сила гравитационного притяжения Земли компенсируется реакцией опоры и вас ничто не тянет вниз, только ваш вес давит на лыжи. Но стоит только оттолкнуться…

Аналогично и поле, создаваемое каким-то зарядом, действует на любой заряд, создавая потенциал для его механического перемещения к себе или от себя в зависимости от знака заряда взаимодействующих тел.

Электрический потенциал

Заряд, внесённый в электрическое поле, обладает определенным запасом энергии, т. е. способностью совершать работу. Для характеристики энергии, запасённой в каждой точке электрического поля, и введено специальное понятие - электрический потенциал. Потенциал электрического поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.

Возвращаясь к аналогии с гравитационным полем, можно обнаружить, что понятие электрического потенциала сродни понятию уровня различных точек земной поверхности. То есть, как мы рассмотрим ниже, работа по поднятию тела над уровнем моря зависит от того, как высоко мы поднимаем это тело, и аналогично, работа по отдалению одного заряда от другого зависит от того, насколько далеко будут эти заряды.

Представим себе героя древнегреческого мира Сизифа. За его прегрешения в земной жизни боги приговорили Сизифа выполнять тяжёлую бессмысленную работу в загробной жизни, вкатывая огромный камень на вершину горы. Очевидно, что для подъема камня на половину горы, Сизифу нужно затратить вдвое меньшую работу, чем для подъема камня на вершину. Далее камень, волею богов, скатывался с горы, совершая при этом некоторую работу. Естественно, камень, поднятый на вершину горы высотой Н (уровень Н), при спуске сможет совершить большую работу, чем камень, поднятый на уровень Н /2. Принято считать уровень моря нулевым уровнем, от которого и производится отсчет высоты.

По аналогии, электрический потенциал земной поверхности считается нулевым потенциалом, то есть

ϕ Earth = 0

где ϕ Earth - обозначение электрического потенциала Земли, являющегося скалярной величиной (ϕ - буква греческого алфавита и читается как «фи»).

Эта величина количественно характеризует способность поля совершить работу (W) по перемещению какого-то заряда (q) из данной точки поля в другую точку:

ϕ = W/q

В системе СИ единицей измерения электрического потенциала является вольт (В).

Напряжение

Одно из определений электрического напряжения описывает его как разность электрических потенциалов, что определяется формулой:

V = ϕ1 – ϕ2

Понятие напряжение ввёл немецкий физик Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома:

V = I·R,

где V - это разность потенциалов, I - электрический ток, а R - сопротивление.

Другое определение электрического напряжения представляется как отношение работы поля по передвижению заряда в проводнике к величине заряда.

Для этого определения математическое выражение для напряжения описывается формулой:

V = A / q

Напряжение, как и электрический потенциал, измеряется в вольтах (В) и его десятичных кратных и дольных единицах - микровольтах (миллионная доля вольта, мкВ), милливольтах (тысячная доля вольта, мВ), киловольтах (тысячах вольт, кВ) и мегавольтах (миллионах вольт, МВ).

Напряжением в 1 В считается напряжение электрического поля, совершающего работу в 1 Дж по перемещению заряда в 1 Кл. Размерность напряжения в системе СИ определяется как

В = кг м²/(А с³)

Напряжение может создаваться различными источниками: биологическими объектами, техническими устройствами и даже процессами, происходящими в атмосфере.

Элементарной ячейкой любого биологического объекта является клетка, которая с точки зрения электричества представляет собой электрохимический генератор малого напряжения. Некоторые органы живых существ, вроде сердца, являющихся совокупностью клеток, вырабатывают более высокое напряжение. Любопытно, что самые совершенные хищники наших морей и океанов - акулы различных видов - обладают сверхчувствительным датчиком напряжения, называемым органом боковой линии , и позволяющим им безошибочно обнаруживать свою добычу по биению сердца. Отдельно, пожалуй, стоит упомянуть об электрических скатах и угрях, выработавших в процессе эволюции для поражения добычи и отражения нападения на себя способность создавать напряжение свыше 1000 В!

Хотя люди генерировали электричество, и, тем самым, создавали разность потенциалов (напряжение) трением кусочка янтаря о шерсть с давних времён, исторически первым техническим генератором напряжения явился гальванический элемент . Он был изобретён итальянским учёным и врачом Луиджи Гальвани , который обнаружил явление возникновения разности потенциалов при контакте разных видов металла и электролита. Дальнейшим развитием этой идеи занимался другой итальянский физик Алессандро Вольта . Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока. Соединив несколько таких источников последовательно, он создал химическую батарею, так называемый «Вольтов столб» , благодаря которой стало возможным получать электричество с помощью химических реакций.

Из-за заслуг в создания надёжных электрохимических источников напряжения, сослуживший немалую роль в деле дальнейших исследования электрофизических и электрохимических явлений, именем Вольта названа единица измерения электрического напряжения - Вольт.

Среди создателей генераторов напряжения необходимо отметить голландского физика Ван дер Граафа , создавшего генератор высокого напряжения , в основе которого лежит древняя идея разделения зарядов с помощью трения - вспомним янтарь!

Отцами современных генераторов напряжения были два замечательных американских изобретателя - Томас Эдисон и Никола Тесла . Последний был сотрудником в фирме Эдисона, но два гения электротехники разошлись во взглядах на способы генерации электрической энергии. В результате последующей патентной войны выиграло всё человечество - обратимые машины Эдисона нашли свою нишу в виде генераторов и двигателей постоянного тока, исчисляющихся миллиардами устройств - достаточно просто заглянуть под капот своего автомобиля или просто нажать кнопку стеклоподъёмника или включить блендер; а способы создания переменного напряжения в виде генераторов переменного тока, устройств для его преобразования в виде трансформаторов напряжения и линий передач на большие расстояния и бесчисленных устройств для его применения по праву принадлежат Тесле. Их число ничуть не уступает числу устройств Эдисона - на принципах Тесла работают вентиляторы, холодильники, кондиционеры и пылесосы, и масса других полезных устройств, описание которых выходит за рамки настоящей статьи.

Безусловно, учёными позднее были созданы и другие генераторы напряжения на других принципах, в том числе и на использовании энергии ядерного распада. Они призваны служить источником электрической энергии для космических посланцев человечества в дальний космос.

Но самым мощным источником электрического напряжения на Земле, не считая отдельных научных установок, до сих пор остаются естественные атмосферные процессы.

Ежесекундно на Земле грохочут свыше 2 тысяч гроз, то есть, одновременно работают десятки тысяч естественных генераторов Ван дер Граафа, создавая напряжения в сотни киловольт, разряжаясь током в десятки килоампер в виде молний. Но, как ни удивительно, мощь земных генераторов не идёт ни в какое сравнение с мощью электрических бурь, происходящих на сестре Земли - Венере - не говоря уже об огромных планетах вроде Юпитера и Сатурна.

Характеристики напряжения

Напряжение характеризуется своей величиной и формой. Относительно его поведения с течением времени различают постоянное напряжение (не изменяющееся с течением времени), апериодическое напряжение (изменяющееся с течением времени) и переменное напряжение (изменяющееся с течением времени по определённому закону и, как правило, повторяющее само себя через определённый промежуток времени). Иногда для решения определённых целей требуется одновременное наличие постоянного и переменного напряжений. В таком случае говорят о напряжении переменного тока с постоянной составляющей.

В электротехнике генераторы постоянного тока (динамо-машины) используются для создания относительно стабильного напряжения большой мощности, в электронике применяются прецизионные источники постоянного напряжения на электронных компонентах, которые называются стабилизаторами .

Измерение напряжения

Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.

Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм мозговой деятельности. Электрокардиограммы и эхокардиограммы дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.

Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения - как логическая единица (1).

По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.

Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.

Средства измерения напряжения

В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов - русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока - до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.

К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!

Примером простейшего индикатора - пробника сетевого напряжения - может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!

Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения - это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения - оно может быть функцией времени и иметь различную форму - быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).

Различают следующие значения напряжения:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение напряжения U i (см. рисунок) - это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение напряжения U a - это наибольшее мгновенное значение напряжения за период. Размах напряжения U p-p - величина, равная разности между наибольшим и наименьшим значениями напряжения за период.

Среднее квадратичное (действующее) значение напряжения U rms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.

Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.

Среднее значение (постоянная составляющая) напряжения - это среднее арифметическое всех его мгновенных значений за время измерения.

Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.

Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.

Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы - на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение напряжения осциллографом

Иллюстрацией к вышесказанному будет серия опытов по измерению напряжений с использованием генератора сигналов, источника постоянного напряжения, осциллографа и многофункционального цифрового прибора (мультиметра).

Эксперимент №1

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов нагружен на сопротивление нагрузки R1 в 1 кОм, параллельно сопротивлению подключены измерительные концы осциллографа и мультиметра. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1: Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 герц и амплитудой 4 вольт. На экране осциллографа будем наблюдать изображение, показанное ниже. Отметим, что цена деления масштабной сетки экрана осциллографа по вертикальной оси 2 В. Мультиметр и осциллограф при этом покажут среднеквадратичное значение напряжение 1,36 В.

Опыт 2: Увеличим сигнал от генератора вдвое, размах изображения на осциллографе возрастёт ровно вдвое и мультиметр покажет удвоенное значение напряжения:

Опыт 3: Увеличим частоту генератора в 100 раз (6 кГц), при этом частота сигнала на осциллографе изменится, но размах и среднеквадратичное значение останутся прежними, а показания мультиметра станут неправильными - сказывается допустимый рабочий частотный диапазон мультиметра 0-400 Гц:

Опыт 4: Вернёмся к исходной частоте 60 Гц и напряжению генератора сигналов 4 В, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением напряжения, которое он показывал в опыте №1, так как изменилось действующее напряжение сигнала:

Эксперимент №2

Схема эксперимента №2, аналогична схеме эксперимента 1.

Ручкой изменения напряжения смещения на генераторе сигналов добавим смещение 1 В. На генераторе сигналов установим синусоидальное напряжение с размахом 4 В с частотой 60 Гц - как и в эксперименте №1. Сигнал на осциллографе поднимется на половину большого деления, а мультиметр покажет среднеквадратичное значение 1,33 В. Осциллограф покажет изображение, подобное изображению из опыта 1 эксперимента №1, но поднятое половину большого деления. Мультиметр покажет почти такое же напряжение, как было в опыте 1 эксперимента №1, так как у него закрытый вход, а осциллограф с открытым входом покажет увеличенное действующее значение суммы постоянного и переменного напряжений, которое больше действующего значения напряжения без постоянной составляющей:

Техника безопасности при измерении напряжения

Поскольку в зависимости от класса безопасности помещения и его состояния даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:

  1. Не проводить измерения напряжения, требующих определённых профессиональных навыков (свыше 1000 В).
  2. Не производить измерения напряжений в труднодоступных местах или на высоте.
  3. При измерении напряжений в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  4. Пользоваться исправным измерительным инструментом.
  5. В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  6. Пользоваться измерительным прибором с исправными щупами.
  7. Строго следовать рекомендациям производителя по использованию измерительного прибора.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Нередко наши покупатели, видя в названии стабилизатора цифры, принимают их за мощность в Ваттах. На самом деле, как правило, производитель указывает полную мощность прибора в Вольт-Амперах, которая далеко не всегда равна мощности в Ваттах. Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.

Электрическая мощность включает в себя несколько понятий, из которых мы рассмотрим наиболее для нас важные:


Полная мощность (ВА) - величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в Вольт-Амперах.


Активная мощность (Вт) - величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ) . Измеряется в Ваттах.


Коэффициент мощности (cos φ) - величина, характеризующая потребитель тока. Говоря простым языком, этот коэффициент показывает, скольно нужно полной мощности (Вольт-Ампер), чтобы "запихнуть" требуемую на совершение полезной работы мощность (Ватт) в потребитель тока. Этот коэффициент можно найти в технических характеристиках приборов-потребителей тока. На практике он может принимать значения от 0.6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, когда потребителями тока выступают тепловые (тэны и т.п.) и осветительные нагрузки. В остальных случаех его значение будет варьироваться. Для простоты это значение принято считать равным 0.8.


Активная мощность (Ватты) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)


Т.е. при выборе стабилизатора напряжения на дом или на дачу в целом, его полную мощность в Вольт-Амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0.8. В результате мы получаем приблизительную мощностьв Ваттах (Вт) на которую рассчитан данный стабилизатор. Не забывайте в расчетах принять во внимание пусковые токи электродвигателей. В момент пуска их потребляемая можность может превысить номинальную от трёх до семи раз.

Во многих магазинах на Aliexpress появились китайские шуруповерты с 25-вольтовыми аккумуляторами. Есть ли у них реальные преимущества или это очередной маркетинговый ход?

Как маркируются аккумуляторы для инструмента

Общеизвестный факт, что практически все аккумуляторные батареи для инструмента состоят из набора литий-ионных элементов формфактора 18650. Типичное напряжение, которым они маркируются – 3,6 вольт. Таким образом в батарее 10,8 В этих типовых элементов будет три. В батарее 14,4 В – четыре штуки. В 18-вольтовой – пять штук.

Первое, чему научились некоторые производители, а затем это подхватили и китайцы, перемаркировывать батареи. Дело в том, что напряжение 3,6 вольта для типового элемента – это среднее значение. Будучи заряженным полностью он выдает до 4,2 В. А при максимально допустимом разряде напряжение падает до 2,9 В.

Чтобы выделится на общем фоне, вместо привычных 10,8 В маркетологи многих компаний начали писать на батареях с тремя элементами 12 В (как округление в меньшую сторону произведения 4,2 х 3). Для батарей с четырьмя элементами в ход пошли значения 16,8 В. Ну а для пятиэлементных батарей и вовсе стали писать 21 В вместо положенных 18 В.

Второй раунд

Но на этом маркетинговые игры не заканчиваются. Чтобы взять очередную планку по вольтам, производители выпустили к 14-вольтовым моделям аккумуляторы увеличенного размера, содержащие не четыре, а шесть элементов. Внешне они выглядят, словно к 16-вольтовому снизу подцепили кирпичик.

Но главный вопрос – что изменилось в начинке самого шуруповерта, ведь компактный корпус остался прежним?

Варианта может быть два: китайцы адаптировали моторчик 14-вольтового шуруповерта под более высокое напряжение, или попросту добавили схему регулировки напряжения к старому мотору. Разобраться, каким из этих двух путей пошел производитель, можно не всегда. Главная причина в отсутствии исчерпывающего набора технических характеристик и нормальных сайтов (даже китайских) у производителей.

Например, для 25-вольтовых шуруповертов Longyun в разных магазинах указываются разные характеристики. Максимальные обороты в описаниях «скачут» от 1350 об/мин (как у 16,8 модели) и до 1550 об/мин. Крутящий момент тоже «плавает» в диапазоне 35-38 Н·м. Какие из этих цифр верные, сказать сложно. Но даже если предположить, что 25-вольтовая мощнее, то разница с 14-вольтовой лишь символическая.

Это подтверждается таблицей характеристик другой модели, которую можно найти в описании вот . У 16-вольтовой модели заявлен момент 35 Н·м, а у 25-вольтовой лишь 40 Н·м.

В любом случае, в итоге разницы в мощности между 16-вольтовыми шуруповертами и 25-вольтовыми практически нет . Но тут стоит оговориться. Ведь чтобы завернуть саморез 5х90, нужен момент всего в 7 Н·м (подробности в этой статье). Так что расстраиваться не стоит.

Главное – емкость, если не обманут

Самое главное, что покупатель получит от 25-вольтового шуруповерта в сравнении с 16-вольтовым – это увеличенную емкость аккумулятора в ватт-часах, в котором вместо четырех элементов установлено шесть. В теории такой шуруповерт должен проработать в полтора раза дольше. Но тут возникает дилемма. За аналогичную стоимость можно приобрести 16-вольтовый с двумя аккумуляторами в комплекте! Вдобавок тут есть еще странности.

В приведенной выше таблице одного из магазинов указанная разница во времени работы шуруповертов на холостом ходу составляет всего 20% (вместо должных 50%). Это может означать, что в 25-вольтовую модель производитель установил элементы меньшей емкости. Например, вместо 1500 мА·ч там окажутся элементы 1300 мА·ч.

Кстати, в абсолютном большинстве случаев емкость установленных в аккумуляторах элементов будет именно 1300 мА·ч, даже если производитель пишет на корпусе гордые 2000 мА·ч (или 2 А·ч). Проверено многократно на собственном опыте.

Итоги

— мощность 25-вольтовых моделей аналогична 16-вольтовым или отличается лишь на 8-10%
— емкость аккумулятора должна быть в полтора раза больше, но в реальности прирост может составить лишь 20%

Другими словами, смысла в покупке 25-вольтового шуруповерта нет никакого. Если хочется получить более долгое время работы, то выгоднее взять 16-вольтовую модель с двумя аккумуляторами.

Я вас приветствую и от всей души поздравляю с Днем Победы! Сегодняшний обзор хочу посвятить сопротивлению. Пока жаба впала в кому после покупки , приобрел еще и нормальную нагрузку вдовесок.
Уже был обзор на , вроде даже не один, но отличия от текущей все же есть, как минимум одно и довольно значительное.
Многобуков не будет - постараюсь кратко описать возможности и протестировать сабж во всем диапазоне заявленных напряжений.
Кому лень читать - модуль оправдал ожидания. Подробнее - под катом.

С поинтами цена падала до 16$

Отслеживание. Там где замазано - посылка путешествовала из одного отделения в другое рядом с моим домом.



Распаковка

Все как всегда. Серый пакет


Пенополиэтилен


Ноунейм коробочка


И прозрачный блистер. В нем и храню =)



Внешний вид. Мне тут на днях пришел лайтбокс, вот осваиваю.

На лицевой стороне расположен дисплей и кнопка управления


С торцов USB вход, индикатор питания и гнездо для подключения доп. нагрузки/триггера QC.


И регуляторы грубой(0-4.5А) и тонкой(0-0.2А) настройки нагрузки. Плюс пищалка, которая оповещает о включении устройства, перегрузке и выключению по таймеру.


С тыльной стороны куча разъемов: DIY (подача любого напряжения от 1 до 25 Вольт), miniUSB , Type-C , microUSB , Lightning и еще один microUSB в качестве доп питания при напряжении источника питания менее 3 Вольт.


Экраны:
Общий. Довольно информативен. При 5-кратном нажатии на кнопку можно выставить таймер отключения нагрузки(1-24 часа). По умолчанию отключается сама при падении мощности до 2Вт*ч.


На втором крупнее отображаются ток и напряжение, пожертвовали температурой и добавили Ватты.


Третий показывает напряжение на шине данных и сопротивление цепи, так что можно без проблем вычислить сопротивление USB шнурка.



Так чем же отличается данная модель от обозреваемой ранее? Давайте посмотрим поближе.


Добавлен дополнительный microUSB разъем(крайний справа) для подключения внешнего питания, которое не влияет на тестируемую цепь. Ну почти не влияет.


А вот потребление по линии доп. питания с выключенным вентилятором.

Характеристики из описания

Интеллектуальный контроль температуры .
Два типа регулировки .
35 Ватт нагрузки .
Напряжение: 1-25V
Ток: 0,1-4,5А (при 5 Вольтах)
Мониторинг в режиме реального времени .
Отображение напряжения, тока, емкости, мощности, времени .
Энергонезависимая память.
Поддержка тестирования Qualcomm QC2.0, QC3.0 (отдельно продается триггер для симуляции потребителя)

Тесты.

Для теста использовал блок питания из . Диапазон напряжения 9-24 Вольта, в нагрузке выдавал около 100 Ватт.
Начал с 10 Вольт. 1.1 Ампера. Фон немного размыт, но мультиметр показывает 1.116 А.


Далее 2 Ампера.


В это же время амперметр


3 Ампера




4 Ампера… сработала защита. Хотя бы знаем, что она есть =) при этом нагрузка упала пока не докрутил до приемлемого значения


Немного поднимем напряжение, раза так в 2


В этот раз погрешность немного выше и разница составила 0.03 Ампера.


При 1.8 Амперах на 19 Вольт снова сработала защита.
С напряжением от 5 Вольт разобрались, но как же обстоят дела с низким? Я откопал цифровую понижайку, но в определенных ситуациях ее показометр врет, так что не обращайте внимания на проскакивающую большую погрешность.
Для начала подключился к DIY разъему без дополнительного питания и снижал напряжение пока показания тестера нагрузки не замерли.


Наглядный показатель - тестер заснул на 3.45 Вольтах. Правда мозги нагрузки работали и при 2.5, когда экран уже сдался =)


Признаки жизни подавал до 0.93 Вольта.


Но после подключения доп. питания все же малость разочаровал.
Показывать напряжение начал с минимального, но вот ток начал расти только ближе к 1.7 Вольтам.


При 1.79 уже можно было поднять значение до 1 Ампера


При 1.85 до 2.


При 2 до 4. Преобразователь по характеристикам не должен столько выдавать, поэтому остановился на 3.01 Ампера и задумался - дальше мучить его не стал.

К вопросу - «а где же сопротивление, о котором говорилось в кратком описании?» я приложу немного тестов в паре с UM25C. Тут можно высмотреть и коррекцию сопротивления с ростом напряжения дабы не выходить за рамки выставленного тока и степень выхода за эти рамки. Изображение кликабельно - не стал закидывать 6 больших однообразных картинок.

По поводу активного охлаждения.
При включении вентилятора его потребление плюсуется к нагрузке.
В том числе и с подключенным доп. питанием . Хотя я не вижу ничего страшного в лишних 50 мА нагрузки во время охлаждения - все данные ведь учитываются и будут соответствовать действительности.
Потребление внешнего питания в холостом режиме 0.0024А


Даем нагрузку на тестируемую цепь - значения подскочили почти в 3 раза до 0.0067А


Ток основной цепи 2 Ампера


Модуль прогрелся до 55 градусов, включилось охлаждение


В это время нагрузка на основную цепь выросла на 0.04 Ампера. Отключение внешнего питания ни на что не повлияло.


Но для цепи ниже 5 Вольт разница есть.


Включилось охлаждение. Ток поднялся, а напряжение немного просело.


Выключаем внешнее питание. Ток подскочил еще больше, а вольтметр начал врать из-за нехватки питания.

Инструкция по управлению сабжем одной кнопкой :
1 нажатие – переключение между экранами;
1 длительное нажатие – сброс всех подсчитываемых значений;
2 нажатия – сброс значения емкости в Ah;
3 нажатия – сброс значения подсчитанной энергии в Wh;
4 нажатия – сброс времени работы под нагрузкой;
5 нажатий – установка таймера отключения питания;
6 нажатий – переключение языка.

В качестве активного элемента использован
Фото платы:

Для тех, кто не любит тесты в картинках, я сделал небольшое видео. Можно смотреть со второй минуты.

Итоги

Производителю удалось сделать довольно гибкий инструмент для тестирования источников питания и шнурков.
Есть защита от избыточной нагрузки, дабы пользователь не спалил ничего в первый день использования.
Вентилятор включается автоматически при перегреве, охлаждает хорошо и не создает шума во время «легких» тестов.
Можно нагружать цепи от 1.7 до 5 Вольт при подключении дополнительного питания.
Вообще изначально планировалось приобрести обычную модель, но с тестером стоил немного дороже, а лишний экран с данными никогда не помешает, хоть и не с идеально точным измерением значений.

Да, можно было немного добавить и купить устройство, которое само нагрузит как надо и графики красивые нарисует, но не таскать же с собой компьютер/планшет, так что в плане практичности уступает текущему варианту. Да и есть у меня чем рисовать.

Ну и небольшой купон, скидывающий цену до 17.99$ (6%): affiliate6
Надеюсь данный материал был полезен. Всем добра =)

Планирую купить +6 Добавить в избранное Обзор понравился +28 +35
 
Статьи по теме:
Можно ли поставить машину на учет без страховки по закону РФ?
Которые регламентируют все аспекты государственного учета транспортных средств, поставить машину на учет или перерегистрировать машину без страховки нельзя .Точнее, нельзя без наличия в единой базе данных Российского союза автостраховщиков записи о действ
Сколько можно ездить на машине по договору купли продажи?
Покупая автомобиль, человек заключает договор купли-продажи с продавцом и оформляет бумаги, которые необходимы для участия в дорожно-транспортном движении. К ним относится водительское удостоверение, полис ОСАГО, а также пакет документов о регистрации тра
Прокладка маршрутов и расчет расстояний между городами по автодорогам
Ищите и составляйте оптимальные для Вас маршруты общественного транспорта ОТ своего местоположения и ДО нужной улицы или дома, а так же автомобильные, велосипедные и пешие маршруты для прогулок. Выберете транспорт: Общественный транспорт На автомобиле
100 дверей замок чудовища прохождение 111
Ей, ей, ей т"ва е яко дай жега, дай,май стана време да изригнем?Всички мои хора са готови,DJ, аре градуса да вдигнем!Дамите са луди, тая вечер ми налитат,пак ще ги газя!Чак толкова ли трябваше да пия,що не ходя вече, ами лазя?Виш, афиш, виш мой знак,като