Гибридный циклотрон без оос класса "а". Гибридный циклотрон без оос класса "а" Разновидности без трансформаторных схем

Если вы потратили круглую сумму на 5 метров экзотического колоночного кабеля, Вы задумывались о пятистах метрах провода в выходных трансформаторах вашего лампового усилителя?
Выходные трансформаторы – это дорогие компоненты со сложной намоткой, чтобы работать должным образом на высоких частотах. Они являются главными виновниками мягкого баса в ламповых усилителях. Основными причинами этого являются перенасыщение магнитопровода на низких частотах. Кроме того, из-за сопротивления обмотки теряется около 10% выходной мощности. Альтернативой является бестрансформаторный выход – OTL (output transformer Less).

Принцип работы

Описываемая OTL схема предлагает несколько решений. Во-первых, в целях защиты динамиков в случае неисправности ей необходимо естественное ограничение тока без использования вспомогательных цепей защиты. Во-вторых, проблема в том, как реализовать симметричный выходной каскад, когда лампы не имеют NPN и PNP структуры как транзисторы.
Одним из вариантов был цирклотрон «circlotron», изобретенный Сесил Холлом в 1951 году, но, который, однако, препятствует использованию естественного ограничения тока и вынуждает использовать очень сложную конфигурацию блока питания. Вместо этого, была разработана схема с некомплементарным выходным каскадом с использованием комбинированной местной обратной связи. Была достигнута хорошая симметрия и низкий уровень гармоник, что было подтверждено в последующих измерений. Такая конфигурация имеет больше общего со схемой Futterman, за исключением того, что пара пентодов используется для драйверного каскада вместо разделителя фазы. Пентоды по сравнению с триодами смогли обеспечить достаточный ток и усиление.
Общей целью проекта было иметь простую схему, как можно с минимальным количеством компонентов на пути сигнала, а также двухтактный принцип работы. Двухтактный каскад не только уменьшает гармонические искажения, но и обеспечивает значительное уменьшение пульсаций питания. Получилась стабильная, надежная конструкция, которая не нуждается в постоянной регулировке. Для этого включена цепь обратной связи постоянного тока, которая после первоначальной настройки держит напряжение смещения в пределах 20 мВ. Последующая корректировка вряд ли потребуется в течение долгого времени, даже после замены ламп.
Я знаю, что обратная связь – спорный вопрос и многие считают, что, в конечном счете, она должна быть нулевой. Тем не менее, нулевая обратная связь в этой конструкции может привести к звуковым шумам и выходному сопротивлению 8Ω, которое может серьезно повлиять на тональный баланс большинства акустических систем. Поэтому было решено применить глубину обратной связи 26дБ, которая является обычной для большинства классических схем ламповых усилителей и понижает выходное сопротивление до 0.4Ω для хорошо контроля баса. Тем не менее, преимущество самодельного усилителя (англ. DIY, D.I.Y.; ди ай уай, от англ. Do It Yourself - «сделай это сам») является то, что вы можете настроить обратную связь в соответствии с вашим собственным вкусом. Простейший способ уменьшить обратную связь до 11 дБ – это убрать конденсаторы связи между первой и второй ступенями.
Наконец, для того, чтобы «раскачать» нормальную акустику было решено, что нужна мощность не менее 20 Вт. Очевидный выбор ламп выпал на Российский 6C33C триод, потому что одна пара может выдать 2,5А тока на 8-омную нагрузку при умеренном питании 150V. Это позволяет получить 25W на 8Ω нагрузки или 40 Вт на нагрузке 16Ω. Если вы можете увеличить нагрузку с 40 до 100Ω, то вы можете легко получить 50 Вт мощности в классе А. Измерения показали, что искажение с включенной обратной связью были меньше, чем у генератора сигналов. Это дало 0,14% THD при 2W с 8Ω нагрузкой без обратной связи, или 0,007% 26дБ с обратной связью.

Конструкция и детали.

Сигнал с входного гнезда SK1 подается на сетку лампы V1A через регулятор громкости RV1, C1 и R1. Включение обратной связи обеспечивается резисторами R1 и R3, которые смешивают сигнал выхода и входа. Глубина обратной связи составляет около 29 и может быть изменена отношением R3/R1. Другими словами, при входном напряжении 500 мВ получаем 25 Вт на 8Ω нагрузке. Когда RV1 установлен на максимум, входное сопротивление составляет около 26к (RV1 параллельно с R1). Конденсатор C1 используется для максимальной обратной связи по постоянному напряжению. При отсутствии смещения, на сетке V1A присутствует тот же потенциал, что и на V1b через R4. Тем не менее, небольшая разность напряжений на катодах каждой лампы, из-за неидеальной схожести, может привести к напряжению на управляющей сетке V1A. Это сразу же отображается на нагрузке в виде постоянного напряжения, потому что 100% обратная связь по постоянном току, через R3, сохраняет входное и выходное напряжения равными. Триммером RV2 можно добиться нулевого смещения на выходе.
Неоновая лампа Н1 служит для ограничения напряжения подогреватель-катод на обеих половинах V1 до 65 В во время прогрева. Она не светится при нормальной работе. Симметричные выходы входного каскада соединены с управляющими сетками V2 и V3 конденсаторами C3 и C4. Существуют также частичные связи постоянного тока через сопротивления R8 и R9. Драйверный каскад образуют лампы V2 и V3 и связанные с ними компоненты. Выходы этого каскада напрямую связаны с сетками V4 и V5, которые образуют выходной каскад. Триммер RV3 позволяет скорректировать напряжения на сетках V4 и V5, тем самым установить ток выходного каскада. Выбор тока покоя предполагает компромисс между сроком жизни ламп и искажениями.
В теории, можно увеличить ток покоя выходных ламп максимально до 400 мА, после чего их аноды будут рассеивать 60 Вт. Это даст низкие искажения, но резко снизит срок службы. Тем не менее, можно добиться гораздо более длительного срока трубки с более низким током покоя, скажем, 200 мА. Это также уменьшит количество тепла, вырабатываемого усилителем! В драйвере были выбраны пентоды, потому что они могут прокачать большее напряжение, чем триоды, а также потому, что они обладают лучшими токовыми характеристиками. Последнее обеспечивает симметрию в выходном каскаде. Еще одним преимуществом пентода является фактическое отсутствие эффекта Миллера, емкости между анодом и управляющей сеткой, в связи с наличием экранной сетки. Это увеличивает пропускную способность каскада и устраняет необходимость в компенсации частотных составляющих для того, чтобы усилитель оставался стабильным, когда применяется обратная связь. Единственным недостатком является то, что они производят чуть больше гармонических искажений нечетного порядка, чем триоды. Тем не менее, EF86 (советский аналог 6Ж32П) были разработаны для аудио. EF86 был очень успешно использован в драйвере знаменитого усилителя Quad II.
V4 является катодным повторителем. Это означает 100% отрицательную связь между катодом и сеткой, в результате имеем единичное усиление и снижение выходного импеданса.
V5 является анодным повторителем и для того, чтобы иметь тот же коэффициент усиления и выходное сопротивление, как V4, он должен иметь 100% отрицательную обратную связь между анодом и сеткой. Это достигается с помощью драйвера тока, который, по определению, имеет очень высокое сопротивление источника, что не ослабляет обратную связь, которая образована через R13. Хотя постоянное напряжение на анодах V2 и V3 отличается, это действительно не оказывает большого значения на режимы работы пентодов.
R15 обеспечивает привязку управляющей сетки V1A к общему проводу во время разогрева усилителя, в случае отсутствия подключенных громкоговорителей.
Газоразрядный предохранитель N2 гарантирует, что выходное напряжение остается в пределах безопасных значений при любых условиях. Если выходное напряжение превышает 90 В, он срабатывает, понижая тем самым выходное напряжение до безопасного.

ИСТОЧНИК ПИТАНИЯ

Хотя блок питания достаточно обычный и мало нуждается в описании, есть несколько моментов, которые нужно отметить: в случае неисправности, заставив защелку выходной каскад либо вверх или вниз, R33 предоставляет средства ограничения тока через выходную стадию и громкоговоритель. Если его значение было слишком малым, трубка вывода или громкоговорителя или оба могут быть повреждены. Если его значение было слишком высоким, небольшое напряжение смещения через громкоговоритель может вызвать значительный дисбаланс в напряжение питания HT2 и HT4. Предохранители FS1 и FS2, сработают в маловероятном случае, если обе лампы драйверного каскада, V2 и V3, не работают (или не подключены), тем самым вызывая чрезмерный ток через обе лампы выхода V4 и V5. В теории, только один предохранитель необходим, но здесь два включены для того, чтобы на любые неполадки они реагировали симметрично.

Улучшение этой конструкции возможно, если для нагревателей V1 использовать постоянный ток и включить схему таймера задержки, чтобы напряжение HT2 HT4 подавалось только тогда, когда все лампы уже разогреты.
Выбор сглаживающих конденсаторов C8-C15 важен, потому как они определенно находятся на пути прохождения сигнала между выходными лампами и громкоговорителем, и поэтому должны быть хорошего качества. Они должны быть свободны от внутренних вибрации, а это значит, что они не должны «петь». Во многих точках во время прогрева есть потенциально высокое напряжение, поэтому резисторы должны иметь соответствующую мощность.
2-х ватные резисторы могут выдерживать 500 В постоянного напряжения. Кроме того, они хорошо звучат, и обладают низким тепловым шумом 1 мкВ / V и низким температурным коэффициент 50 ppm / ° C. Вы можете заметить из фото 2, что монтаж немного тесноват, поэтому рекомендуется использовать большее шасси, чем 12 «× 9″ × 3 » которое было использовано. Усилитель производит довольно много тепла, и в идеале лампы должны иметь больше пространства вокруг себя для циркуляции воздуха. Также должна быть хорошая вентиляция под шасси.
Включение и наладка усилителя
Перед первым включением убедитесь, что Триммер RV2 находится примерно в среднем положении
и что RV3 установлен на минимальное сопротивление.
Вращая RV3, увеличиваем ток покоя с нуля до желаемой величины (автор поставил его на 200 мА), контролируем его амперметром M1. Во время нормальной работы M1 едва дергается, это не индикатор уровня! Тем не менее, отрадно иметь его на лицевой панели как раннее предупреждение на случай, если что-то пойдет не так.
После 20 минут прогрева подкорректируйте RV3 в случае необходимости. Затем подключите милливольтметр к выходным терминалам и настройте RV2 для получения нулевого значения. Всегда это нужно делать с выкрученной громкостью до минимума или при замкнутом входном разъеме.
Когда усилитель работает, никогда не включайте его сразу же после выключения, есть вероятность сжечь предохранители.

Использованные источники
1. C. T. Hall, “Parallel Opposed Power Amplifiers”
US Patent 2,705,265, June 7, 1951.
2. J. Futterman, “A Practical Commercial Output
Transformer-less Amplifier,” J. Audio Eng.
Soc., (1956 October).
3. Circlotron history page http://circlotron.
tripod.com/.

Список необходимых компонентов показан в таблице.

C1, C2………………Capacitor, 1μF 450V polypropylene Ansar
C3, C4………………Capacitor, 0.1μF 630V polypropylene
Ansar
C5…………………….Capacitor, 10μF 250V electrolytic
C6, C7, C18……….Capacitor, 100μF 250V electrolytic
C8, C9, C10-15….Capacitor, 6800μF 63V electrolytic Elna
“tonerex” or Samwha “for audio”
C16, C17, C19……Capacitor, 100μF 500V electrolytic
D1, D2, D3, D4…Diode (fast recovery), FR605G 6A 600V
D5, D6……………..Diode, 1N4006 1A 800V
FS1, FS2…………..Fuse and holder, 3.15A 20mm
M1……………………Ammeter, 0-1A DC
N1……………………Neon lamp, wire ended, T2
N2……………………..Gas discharge tube (GDT), 90V DC sparkover
N3……………………Neon indicator, panel mounted
PL1…………………..Plug, IEC chassis
R1, R2………………Resistor, 34k 0.1% 0.25W precision metal
film Welwyn
R3, R4……………..Resistor, 1M 0.1% 0.25W precision metal
film Welwyn
R5, R6……………..Resistor, 100k 0.1% 0.25W precision
metal film Welwyn
R7…………………….Resistor, 470k 1% 2W 500V metal film
Maplin
R8, R9……………..Resistor, 4M7 5% 0.5W 3.5kV metal film
Vishay (match pairs to within 1%)
R10, R11…………..Resistor, 1M 1% 2W 500V metal film
Maplin
R12, R13, R15…..Resistor, 100k 1% 2W 500V metal film
Maplin
R14…………………..Resistor, 15k 5% 0.5W metal film
R16…………………..Resistor, 10k 5% 0.5W carbon film
R17-20………………Resistor, 47R 5% 0.5W carbon film
R21, R22…………..Resistor, 1k 5% 0.5W carbon film
R23-30……………..Resistor, 10k 5% 0.5W carbon film
R31, R32…………..Resistor, 1k 5% 1W carbon film
R33………………….Resistor, 1k 5% 10W wire wound
Welwyn
RV1…………………..Resistor, variable 100k
RV2…………………..Resistor, trimmer 1k 20-turn 1W cermet

RV3…………………..Resistor, trimmer 10k 20-turn 1W cermet
Spectrol + 32mm panel mount adaptor
S1…………………….Switch, double pole single throw 250V
AC 5A
SK1………………….Socket, phono
SK2………………….Terminals (shrouded) to suit loudspeaker
cable
T1…………………….Mains transformer, 6V + 6V 15VA
T2…………………….Mains transformer, 12V + 12V 225VA
T3…………………….Mains transformer, 120V + 120V 625VA
V1…………………….Tube, ECC83 + B9A socket
V2, V3………………Tube, EF86 (matched pair) + B9A socket
V4, V5………………Tube, 6C33C (matched pair) + socket
Chelmer
Chassis…………….Steel, 17″ × 10″ × 3″ Hammond
audioXpress February 2010 Тим Меллоу

Эта идея родилась после многочисленных экспериментов с
однотактными циклотронами, где выходной автотрансформатор
нужно было « передавливать » противотоком для получения
нуля на его выводах. Итак, все по порядку, что же это за зверь
однотактный циклотрон и чем он лучше обыкновенного усилителя
построенного по традиционной схеме? Для начала пользуясь
железным правилом аудиофила: « Нет элемента – нет проблемы »
создадим наиболее короткий тракт от ЦАПа до динамика. Тут
нужна лампа с высокой крутизной и большим усилением, чтобы
на одном каскаде получить около одного ватта выходной
мощности, что вполне достаточно для субъективной оценки
качества звука. В таком коротком тракте будет слышно все:
качество пайки, длина проводов и т.д. поэтому монтажу нужно
уделить особое внимание. Схема на рисунке 1.

Рис. 1.

Нижняя лампа это собственно усилитель мощности, а верхняя
простейший, но эффективный источник тока, достаточно
взглянуть на ВАХ 6Ж52П в пентоде и сразу понятно почему
верхняя лампа стабилизирует именно ток, а не напряжение.
Его задача (источника тока) – « передавить » напряжение на
автотрансе до нуля. Для чего это нужно? А лишь для того, что
по давно устоявшейся традиции считается, что на динамике не
должно быть никакой постоянки, это мол, для него вредно.
У меня другое мнение – это не вредно, это даже полезно, но
об этом чуть ниже.
Настройка схемы проста. Резистором R2 выставляем 150
вольт между катодом и экранирующей сеткой лампы Л2.
Резистором R1 добиваемся нулевого потенциала на автотрансе.
Токи: I1 - ток Л1, I2 - ток Л2, они должны быть равны.
В качестве Тр1 применен тот же транс, что и во втором варианте
схемы, но здесь без зазора 0,12 мм.
Что получаем в итоге от циклотрона:
1. Автотранс можно мотать на ТОРах, т.к. отсутствует
подмагничивание сердечника.
2. Частотный диапазон расширяется до теоретического
предела: снизу – 0 Гц (зависит от индуктивности и
Ri выходной лампы), сверху – до 100 кГц (зависит
от собственной емкости автотранса).
3. Ну и главное, звук, субъективно становится более
резким и прозрачным. Все что терялось в воздушном
зазоре между первичкой и вторичкой при
трансформации, теперь присутствует в выходном
сигнале.
Скептики могут улыбнуться и возразить – зачем нужен весь этот
геморрой с источником тока? В ответ скажу просто и коротко –
это улучшает качество звука.
Теперь переходим к основной части статьи.
Так вот, в процессе экспериментов родилась мысль, а нельзя ли
вообще убрать источник тока, и чем это грозит динамику?
Оказалось ничем, смотрим схему на рисунке 2.


Рис. 2.

В качестве автотранса были использованы два телевизионных
трансформатора ТВ – 3Ш, 1 – это первичка, 2 – это вторичка.
Трансы разбираются, I пластины удаляются, далее стыкуем
их теми местами, где были I пластины с зазором 0,12 мм,
обмотки соединяем параллельно. Схема на рисунке 3.


Рис. 3.

Посчитаем мощность, которая падает на динамике:
Р = 0,00017 х 0,02 = 0,0000034 Вт
Ну и что, до сих пор страшно включить динамик в анод?
По-моему этими микроваттами и муху не убьешь, не говоря уже
об акустике. Разумеется, окончательный выбор остается за Вами,
но еще раз хочу сказать – автотранс реально улучшает качество
звука. Тем более, (я так думаю) что небольшая постоянка
не дает диффузору сильно болтаться после одиночного импульса,
чем и объясняется более резкое звучание схемы на низах.
Такой простой переделкой из ТВЗ в автотранс можно улучшить
качество звука любого однотактного усилителя. Но нужно не
забывать, что во втором варианте используется автотранс с
зазором.
Так же необходимо помнить, что между колоночным кабелем
и землей присутствует высокое напряжение опасное для жизни.
Я бы советовал припаять колоночный кабель прямо к автотрансу
без переходных клемм на корпусе, а разъемы на колонке
закрыть небольшим кожухом.
Удачи и хорошего звука.

Максимов Андрей Владимирович. sattelite2006()yandex.ru


Комментарии к статье:

В старой советской литературе его называли противопараллельным (мостиковым) усилителем, в западной – циклотроном (circlotron, цирклотрон). Вы называйте, как удобнее и привычнее. В статье я буду употреблять слово "циклотрон".
А по сути он – двухтактный мостовой каскад. В дальнейшем, для простоты, буду называть его циклотроном, т. к. всем это понятие более знакомо. Циклотроны по способу связи с нагрузкой делятся на трансформаторные, автотрансформаторные, дроссельные, анодные, SE-циклотроны и бестрансформаторные (OTL) циклотроны.

Дальнейшее моё повествование будет об OTL-циклотроне, т. е. о бестрансформаторном двухтактном мостовом силовом каскаде с резисторами в катодах выходный ламп.

Почему я обратился к данной теме?
Причин несколько. Во-первых, было много нападок со стороны адептов трансформаторных усилителей на всё, что было без трансформаторов, во-вторых, честно признаюсь, я не смогу намотать качественный выходной транс кустарно, считаю, это может сделать далеко не каждый любитель и то на профессиональной оснастке. Ну, и, в-третьих, у меня появились несколько 6С33С-В, захотелось построить нечто масштабное и мощное на этих замечательных триодах. Так что назло первой причине, сожалея о второй и благодаря третьей, я принялся за воплощение идеи.

Первый проект

Началось всё в далёком 1996 году, тогда у меня ещё не было интернета и цифрового фотоаппарата, поэтому картинок поэтапной сборки усилителя, к сожалению, предоставить не могу. Работа на 90% была выполнена в течение года, потом останавливалась на годы и годы по разным причинам. Прикидывая схему будущего аппарата, я исходил из максимума, что можно выжать из пары 33-х ламп в двухтакте не цели ради, а спортивного интереса для. Пробный вариант делался на макете. Нагрузкой усилителя предполагались АС на двух последовательно соединённых динамиках ЛОМО 2А12-У4 общим сопротивлением 30 Ом (читайте статью об АС в разделе “Проекты акустики”).

Расчёт усилителя вёлся по характеристикам ламп.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Начну с конца тракта. В плечах оконечного каскада (ОК) по одной лампе 6С33С-В. Анодное напряжение было выбрано 160В с током покоя 100мА. Смещение -60-70В фиксированное. Хочу обратить внимание, что в циклотроне через катодные резисторы в статике ток не протекает, катоды находятся под нулевым потенциалом. Поэтому смещение только фиксированное! Оба катодных резистора включены параллельно нагрузке, их номинал выбирается исходя из того, чтобы не шунтировалась нагрузка.

По переменному току лампы ОК циклотрона включены параллельно, а значит и Rвых в четыре раза меньше, чем в обычных двухтактных схемах. Каскад нормально работает при номиналах Rк – 510Ом-3кОм. Попробовал даже при Rк=15Ом, но падала мощность каскада, и наблюдалось некоторое “заострение” вершин синусоиды. Так как усилительный каскад является катодным повторителем, то напряжение на Rк почти равно входному на сетке. Переменным резистором в цепи смещения выставляется “баланс нуля” на выходе в статике после прогрева ламп. Контролируется этот ноль при помощи миллиамперметра с центральной шкалой и пределами отклонения -50…+50мА, подключённого через ограничительный резистор 200 Ом. Даже при самом максимальном разбалансе плеч (ручка потенциометра вывернута в любое крайнее положение) и при включении сразу полного питания, стрелка прибора совершает кратковременный бросок на отметку 50мА или даже чуть зашкаливает, что соответствует временному появлению в нагрузке постоянки 10В. На практике эта цифра при правильном прогреве ламп на порядок ниже.

Драйверной лампой была выбрана 6Н6П-Е, сетки которой непосредственно связанны с анодами фазоинвертора (ФИ) на 6Н23П-ЕВ (Uа=110В, Iа=7…8мА). ФИ с катодными связями. На анодах 6Н6П-Е напряжение +260…265В, катодным резистором подбирается напряжение на катоде 115...116В. При таком режиме каждый триод драйвера кушает до 20мА. Хочу ещё раз напомнить, что этот макет прогонялся 13 лет назад, возможно какие-то нюансы я уже подзабыл. Но! Что я помню точно. Мощность удалось развить до 50Вт, было очень горячо! Пришлось обдувать панельки 33-х вентилятором. АЧХ оказалась практически линейна от 10Гц до 200кГц. Искажения и уровень шума и фона не измерялись. Картинка синуса 1кГц на осциллографе была идеальна. Поскольку АС для испытания не были тогда ещё готовы, я просто подключил два последовательно соединённых динамика 2А12-У4 и прослушал на небольшой мощности. Усилитель играл, а это главное.

С изготовлением шасси проблем не было. Так как я служил инженером на кафедре радиосвязи некогда ликвидированного и разрушенного военного училища связи и занимался передатчиками большой мощности, то имел выходы на различные оборонные предприятия и НИИ города, которые разрабатывали и поставляли нам технику. С материалами и деталями тоже проблем не было, тогда было золотое время. Так в одном из цехов я заказал шасси размером 350х350х65мм. Эту гнуто-сварную конструкцию мне изготовили из листа меди толщиной 2мм со всеми необходимыми отверстиями.


Построение ОК не поменялось, поменялись режимы работы. Анодное напряжение 95В, смещение -29-30В. Режим класса АВ. При номинальном входном напряжение ~2В амплитуда на выходе ФИ ~30В, что вполне достаточно для раскачки 33-х ламп. При указанных режимах на эквиваленте нагрузке 30Ом я имею переменки 20В, что соответствует примерно 13Вт мощности.
Кто-то скажет, что за бред!? В двухтакте на 33-х всего 13 ватт. Я ещё раз оговорюсь – печка мне не нужна, я ставил целью не выжать 50Вт на канал, а лишь найти компромисс между “можно”, “нужно” и “целесообразно и комфортно”. Если увеличить номинал анодных резисторов ФИ до 110кОм при Еа+330В, получив напругу на анодах +90…+95В, то при входном сигнале ~4В на выходе ФИ можно добиться размаха ~70В. Но это для тех, кто захочет большей мощи. Надо только не забыть, что при этом лампы ОК необходимо побольше припереть, да и анодное напряжение поднять. Иначе нелинейность в начале характеристики обеспечена. Ещё одно замечание. Если резистор в сетке 6С33С мал (как правило ставят 1…3кОм), то эти ~70В просядут до ~40В. Чтобы этого не произошло, сеточный резистор следует брать килоом 30…100. Проверено. В ходе настройки усилителя выяснилось, что при смещении ОК -20…-22В наступает ограничение.


Желание повысить мощность за счёт увеличения входного сигнала и увеличения смещения до -40…45В приводит к искажению типа “ступенька”.


Смещение 6С33С-В подаётся от стабилизатора на одном транзисторе типа КТ-973А.


На стадии макетирования я пробовал стабилизировать анодное выходных ламп на транзисторах 2Т-834А, но потом отказался, т.к. теряю на них около 5…6 Вольт напряжения. Просмотрев несколько схем циклотронов на забугорных сайтах, я отметил, что питание выходных каскадов нестабилизированное, номинал ёмкостей фильтра 2200…4700мкФ. Накалы всех ламп питаются переменным током. Вообще, чтобы избавиться от всего этого геморроя с сетью, я планирую купить промышленный сетевой стабилизатор, благо этого добра навалом.

Конструкция и детали

Шасси, как я уже писал, выполнено из листовой 2мм меди. Прошу прощения за неприглядный местами внешний вид – краска с годами кое-где облупилась.


В центре установлен трансформатор.


Под ним сетевой переключатель типа 4П2Н от военки, он имеет два направления и четыре положения – выкл., прогрев, полное питание и выкл. Тут же рядом выходят выводы сетевой обмотки транса.


С ручкой переключатель соединён стальным стержнем через подшипник.


Сзади размещены четыре банки К50-29 10000мкФх100В.


В то время они оказались под рукой (современные раз в 6-8 меньше по объёму и легко влезают внутрь подвала). Там же находятся лампы стабилизаторов.


На задней стенке – гнёзда, клеммы, предохранительные колодки. На передней стенке – ручки переключателя сети и регуляторов “баланс нуля”. Вдоль левого и правого бортов расположены лампы, сверху спереди – приборы.

Детали, в основном, отечественные, используемые в военке.



Сигнальные и слаботочные цепи развёл проводом МС. Монтаж, за исключением стабилизаторов смещения и нескольких элементов стабилизатора высокого анодного, навесной.



Общие провода входного каскада собраны в точку у катодных резисторов и кондёра фильтра.

“Земли” катодных резисторов ОК и цепей смещения спаяны вместе. Далее общие провода всех каскадов и каналов сводятся на конденсаторах фильтра высокого анодного. Методом тыка на шасси была определена точка общего заземления усилителя, она оказалась в центре рядом с сетевым переключателем. В эту же точку припаялся конец от экранирующей обмотки силовика. Кстати, наличие этого соединения, в плане фона, ощутимо на слух. В нижнюю крышку шасси я врезал два небольших плоских вентилятора (12Вх170мА) для обдува панелек 6С33С-В.

Включение и настройка

Включение начинается с установки ручки переключателя сети в положение “прогрев”. На все цепи схемы подаются половинные напряжения питания. Лампы предварительно прогреваются и минут через десять можно подавать полное питание. В процессе дальнейшего прогрева регуляторами “баланс нуля” по приборам ставим ноль на выходе. Хочу заметить, что после получасового прогрева гуляния анодных токов 33-х ламп устаканиваются, и, сделав последнюю подстройку баланса нуля, можно слушать музыку. Собственно особой настройки не требуется, надо проверить номиналы напряжений и токов, указанных на схеме, и подобрать правильные режимы работы ламп – подбор резистора в катоде ФИ и установка напряжения смещения ОК подстроечным резистором стабилизатора.

Прослушивание

Нагрузил усилитель на АС на 2А12-У4. Предварительного усилителя и регуляторов тембра у меня пока нет, поэтому прямо с виниловой вертушки (вых.~250мВ) подал сигнал. Сравнивал звучание с транзисторной “Радиотехникой” при отключённых темброблоке и тонкомпенсации. Даже своим среднестатистическим слуховым аппаратом учуял, что ламповый звук лучше твёрдотельного – более живой и естественный. Чувствуется хорошая динамика 33-х триодов. Если в динамиках прослушивается фон, можно попробовать поменять между собой концы обмотки ~70в в выпрямителе одного из плеч.

В планах

Хочу в дальнейшем поэкспериментировать, вместо OTL использовать дроссельную и автотрансформаторную связь с нагрузкой. Сейчас я в поиске железа от ТС-180 или ТС-250. Поэтому, как будут результаты изысканий по этой теме, я продолжу свою статью.


Начинал своё хобби с простых транзисторных схем усилков, цветомузыки и прочего, что печаталось в «Радио».

Двадцать лет назад собрал свой первый двухкассетник.
С 1996г. увлёкся ламповыми схемами.

Читательское голосование

Статью одобрили 34 читателя.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Бестрансформаторный ламповый усилитель

Давно мечтал послушать, как звучит бес трансформаторный ламповый усилитель, включенный напрямую в высокоомный динамик, исключив незыблемые для ламповой техники выходные трансформаторы или дорогие электролитические конденсаторы. Выходные трансформаторы обычно являются «камнем преткновения» и на их изготовление у радиолюбителя, решившегося построить ламповый усилитель уходит уйма времени. Фирменные выходные трансформаторы для лампового усилителя стоят дорого, особенно если они от какого-нибудь трансформаторного «Гранда» типа «Tango», «Tamwra» и т.д. не каждый может себе их позволить. А правильно намотать выходной трансформатор с секционированием или галетным способом очень трудоемко и зачатую непонятно, как это сделать. Руководства по намотке выходных трансформаторов обычно привязаны к определенной схеме и выходной лампе и даются авторами в довольно произвольной трактовке. В итоге, намотка выходного трансформатора - это наиболее муторная и затратная по времени и деньгам эпопея в создании качественного лампового усилителя. По этой причине радиолюбители на выходные трансформаторы поголовно ругаются и очень не любят их делать.

Работа началась «с конца» с разработки и воплощения в железе полноценного высокоомного широкополосного динамика. Нижеследующий материал - дополнение «усилительной частью» высокоомных динамических головок, которые я делаю мелкими сериями уже больше двух лет. Предлагаю Вам не очень развернутый, но полезный материал про мои без трансформаторные усилители к циклу статей по разработке и испытаниям высокоомных динамиков. Ссылки по теме найдете в конце статьи.

Разновидности без трансформаторных схем

В интернете есть большое количество схем бестрансформаторных ламповых усилителей. Две их основные разновидности: 1. Включение нескольких ламп с низким внутренним сопротивлением параллельно и работа на обычные низкоомные динамики. 2 Применение широко распространенных ламп и работа их на специальные высокоомные динамически громкоговорители.

Оба варианта без трансформаторных усилителей применяются достаточно редко т.к. номенклатура ламп с низким внутренним сопротивлением очень узкая, из советских их всего три: 6с-33с, 6с-18с и 6с19п (они разработаны для стабилизаторов напряжения). Как вариант - можно применить мощную лампу строчной развертки телевизоров 6п-45с, которая имеет тоже относительно низкое внутреннее сопротивление. Если применять лампы с низким внутренним сопротивлением, то их нужно соединять по несколько штук в параллель. Плюс обязательна схема усилителя - «циклотрон», как имеющая минимальное выходное сопротивление.

Основные лампы для безтрансформаторных усилителей это 6с33с и 6с18с. Внутри баллона каждой из них находится по два мощных триода с плоскими, хорошо развитыми анодами. За счет близкого расположения катода, сетки и анода, которые имеют большую площадь поверхности, внутреннее сопротивление лам беспрецедентно низкое. К сожалению низкое внутреннее сопротивление ламп 6с33с и 6с18с это почти единственное их преимущество. Спец лампы, предназначенные для стабилизаторов напряжения имеют малую крутизну и невысокий коэффициент усиления. ити подогревателей этих ламп рассеивают большую мощность, за счет чего КПД усилителя на 6с33с и 6с18с получается заметно ниже, чем у усилителей на обычных высоковольтных лампах.

Схема

Основа схемотехники без трансформаторного лампового усилителя почти стандартна. Входной каскад собран на распространенном «звуковом» двойном триоде с высоким усилением 6н-2п. Чтобы поднять усиление первого каскада, пришлось повысить его анодное напряжение почти до максимума (по даташиту) лампы 6н2п. По этой же причине пришлось увеличить номинал резисторов утечки выходного двухтактного каскада. В таком режиме внутреннее сопротивление Ri каждого триода лампы 6н2п примерно в три раза меньше сопротивления анодных резисторов, что делает дифкаскад максимально линейным. Катоды дифкаскада «подперты» генератором тока на «звуковом» германиевом транзисторе МП38А. Генератор стабильного тока на МП38А имеет выходное сопротивление больше 1 Мом, что без дополнительных мер позволяет получить максимально равные напряжения на выходе плеч дифференциального каскада. Германиевый источник тока повышает линейность дифкаскада и снижает его чувствительность к пульсациям питающего напряжения.

Двухтактный выходной каскад собран на высоколинейных пальчиковых триодах 6с19п, применяемых обычно в стабилизаторах напряжения. Каждое плечо выходного каскада имеет отдельный изолированный источник питания с низким внутренним сопротивлением. Для питания первого каскада применены два независимых выпрямителя с выходными напряжениями + 420 и -145 Вольт. Итого - бестрансформаторный ламповый усилитель содержит 6 независимых источников питания для стерео-варианта. В цепях серок триодов 6с19п установлены два делителя, служащих для балансировки выходного каскада. Одним резистором на выходе подстраивается «нуль», вторым устанавливается ток покоя выходного каскада. Нуль на выходе и ток покоя схема держит «железно».

При входном напряжении 2,3 В выходная мощность (с двумя лампами 6с19п) составляет 5,5 Вт на нагрузке 510 Ом. Чувствительность несколько ниже, чем принято и это можно считать небольшим недостатком данного бес трансформаторного усилителя.

Звучание

Звук у бестрансформаторной схемы оказался весьма интересным. Поразила высокая детальность, совершенно не характерная для ламповых трансформаторных аппаратов. Она была скорее, как у транзисторного усилителя, но с ламповой теплотой. Я объясняю это высоким быстродействием данной схемы и ее сверх широкой полосой пропускания. Возможно свой эффект дает малая, по сравнению с традиционным выходным трансформатором - индуктивность высокоомного динамика. На осциллографе фронты меандра практически не режутся до частоты 80 КГц.

Особенно хорошо широкая полоса заметна на одновременном звучании нескольких инструментов, дающих плотный высокочастотный спектр: тарелок, литавр, духовых и др. Инструменты звучат отдельно и не смешиваются в кучу, что не редко бывает у трансформаторных усилителей. Хороший плотный низ, и это при всего 5-ти Ваттах на выходе! Удивительно… Уровень интермодуляционных искажений оказался значительно ниже уровня гармонических, что редкость для ламповых схем. (Графики искажений приведены на фото). Усилитель оказался «всеядным», он одинаково хорошо играет музыку любого жанра, а количество «вкусных» ламповых гармоник очень умеренное и внимание особо не привлекает.

Не так давно на www.dvdworld.ru разгорелась, не без участия автора, дискуссия про бестрансформаторные усилители вообще, и цирклотрон (circlotron) в частности. Автор оказался в меньшинстве... большинство же утверждало коллективную точку зрения на то, что...

  • Бестрансформаторные усилители играть не могут.
  • Бестрансформаторные схемы - "транзисторные".
  • Что такое цирклотрон? голос с задней парты: Это и есть бестрансформаторный усилитель?
  • Нет! У них у всех "стеблевая" топология.
  • Это новомодное изобретение такое. Типа Долби. Для домкино сойдет.
  • Это класс АБ! чур меня!
  • Это же глубокая ООС! голос с задней парты: А без ООС он не бывает! все хором: Кююю...
  • У кого-то от цирклотрона колонки сгорели
  • Вообще-то, только двое из оппонентов признались, что слышали цирклотрон вживую (правда, один из названных приборов цирклотроном не являлся), но оно все равно не играет.
  • Только один из оппонентов сам построил бестрансформаторный усилитель (или, по крайней мере, наблюдал процесс), но остался им недоволен.

Вот такие вот утверждения, на грани третьей стадии статистики. Давайте разбираться по пунктам. Для начала разберемся, что такое цирклотрон и что такое бестрансформаторный усилитель... лица, не поступающихся принципами, могут дальше не читать.

В основе цирклотрона - двухтактный мостовой силовой каскад, в котором токи источников питания перекрестно замыкаются через нагрузку. Результирующий ток нагрузки равен разнице токов двух плеч. Вот так выглядит (именно так) выглядит бюджетный цирклотрон Electro-Voice А20 1956 года выходной мощностью 20 Ватт (выходной и предвыходной каскады). Аналогичная конструкция на отечественных приборах опубликована в Радио, N9, 1963 год.

Ну и где же здесь бестрансформаторный каскад, спросит оппонент? A кто ему сказал, что цирклотрон - обязательно бестрансформаторный? Ну точно не я, это господа оппоненты сами выдумали, все вопросы к ним... А равно и по поводу транзисторной топологии.

Нагрузка может быть непосредственно акустической системой (как в современных цирклотронах Atma-Sphere, Tenor Audio). Может быть - автотрансформаторной (используется и в заводских конструкциях, и многими пользователями "чисто бестрансформаторных" цирклотронов). Можно, наконец, замкнуть нагрузку через аноды,

а сам цирклотрон сделать однотактным, вот так:

Мы уже упомянули дату - 1956. События развивались так (поклонников новых хронологий предупреждаю - даты настояшие!)

  • 07.06.1951 - Сecil T. Hall подает заявку на патент США, патент 2705285 выдан 29.03.1955
  • 01.03.1954 - Alpha M. Wiggins подает заявку на патент США, патент 2828369 выдан 25.03.1958.
  • Параллельно, аналогичный патент был зарегистрирован в Финляндии на имя Tapio Koykka (выдан 10.11.1954 - абсолютное первенство)

Патенты Уиггинса и Койкки немедленно реализовались в промышленные изделия под марками Electro-Voice (CША) и Voima Radio (Финляндия). Более подробно история рассказана на www.circlotron.tripod.com , откуда эта информация и получена автором. Благо, есть еще люди на свете, передающие информацию, взятую не с потолка, а из патентных библиотек...

Действительно, новомодная технология...

Почему схема в свое время не распространилась по всему свету? В изначальном трансформаторно-пентодном варианте ее единственное преимущество перед традиционными пушпулами - низкое выходное сопротивление со стороны катода упрощает конструкцию трансформатора. Все остальные "достоинства" пентодного пушпула - налицо (обязательная ООС, Вильямсоновские каскады, не менее двух пар разделительных емкостей и т.п.). А существенный минус - двойной комплект обмоток, выпрямителей и фильтров - не позволял конкурировать в цене с традиционными конструкциями. Ведь тогда не было хаенда, и борьба шла за каждый доллар, а не число нулей в цене. Квантовый скачок к полностью бестрансформаторной схеме требовал перехода на качественно другой ценовой уровень, тем более при тогдашних комплектующих - напомню, что напряжения в бестрансформаторном усилителе ламповые, а токи - транзисторные, так что стоимость полновесного фильтра питания (10-40 тысяч мкФ * 200В на канал) и сегодня совсем не детская... В общем, не прижилось дитятко. Новая жизнь цирклотрона началась примерно в 1982 году (умер Брежнев, сбили Боинг, разместили Першинг, выпустили Novacron).

Кстати, о двойном комплекте источников питания. Он практически неизбежен в усилителях мощности, а вот в балансном предусилителе Ральфа Карстена (патент США 6242977) - полноценном цирклотроне с прямым выходом (120В пик-пик, не шутка!) на 600-омную линию - обошлось одним комплектом выпрямителей. Как? не просто, а очень просто... кто не догадался, зайдите в патентную библиотеку, не мне Вас учить. В ламповом оконечнике такое тоже возможно... пара емкостей и пара (лучше - две пары) МДП-транзисторов на хар-роших радиаторах.

Теперь разберемся со стеблями. Сложно сказать, почему в головах оппонентов засели такие ботанические познания (разработчики "стеблей" предпочитали этнографические термины из жизни коренных народов США). Как показал следственный эксперимент, стеблем названа схема Футтермана-Розенблита (практически, в нынешнее время производится только Розенблитовский вариант - первоначальная схема Футтермана оказалась ненадежной и не использовала в должной мере низкое выходное сопротивление со стороны катода). Вот он, стебель, не имеющий ничего общего с цирклотроном.

Cхема Ф-Р уверенно работает только с обратной связью (не менее 12дБ). Без ООС она неработоспособна - выходное сопротивление со стороны катода и анода разное, второй гармоники будет много даже по хаендным стандартам. Вот только предварительных каскадов надо 3, а в цирклотроне достаточно одного.

И, ко всему прочему, предоконечный каскад в схеме Ф-Р видит совершенно разные емкости нагрузки. В цирклотроне же оба плеча симметричны, и проблем с разным сдвигом фаз нет. Килогерц так до сотни.

По постоянному току - и в цирклотроне, и в "стебле" - необходимо два независимых источника смещения выходного каскада. Действительно, при прямом подключении акустики разница в токах плеч замыкается через нее. Но на практике, при максимальном токе плеча в 0.5А (восемь 6Н13С или 4 6С33С на канал) - даже при полном выходе из строя одного плеча через нагрузку потечет ровно пол-амперы. В жизни - добиться разбаланса исправных плеч больше 1/3 тока покоя при исправных лампах не смогут даже самые заслуженные оппоненты и радиогубители. А можно ли убить акустику постоянным током в 100-200 мА? В крайнем случае, если отказало одно плечо, а в другом - сетки сели на землю, тут извините - должны сработать предохранители. Оппоненты, вы знаете, что это такое?

А при автотрансформаторной связи вопрос о постоянке в нагрузке вообще неуместен. При сопротивлении полной обмотки в 1 Ом от каждого катода до земли - ровно половина Ома, а на выходном зажиме - четверть Ома... перемножаем на 0.5А, получаем 125мВ в худшем случае.

Теперь об ООС. Цирклотрон без ООС на традиционных "стабилизаторных" лампах

  • Устойчив по постоянному току и напряжению. Лампы 6С33С в режиме с фиксированным смещением, вообще-то, склонны идти вразнос, но это лечится элементарной локальной ООС (через внутреннее сопротивление источника питания). Лампы 6Н13С, 6С19П, 6П45С не требуют каких-либо ухищрений.
  • Имеет полосу от 0 до не менее 100 кГц по уровню -1дБ. И устойчив как Медный Всадник. Полоса определяется, в основном, связью с предыдущими каскадами (снизу) и емкостной связью между половинками блока питания (сверху). Разумеется, при трансформаторной или автотрансформаторной связи полоса сужается.
  • Имеет в бестрансформаторном включении выходное сопротивление от 10 Ом (8 6Н13С на канал) до 2 Ом (Atma-Sphere MA1, 24 6Н13С на канал). А c автотрансформатором 3:1 - от 1 до 0.3 Ома. Вам и этого много? При 50В на сетках это примерно 15В на выхоже. Вам этого мало?
  • Конечно, все зависит от акустики. Если ставить задачу воспроизвести 10Гц на крохотных фазоинверторах - пожалуйста, используйте ООС. А если нет, и сопротивление акустики в СЧ диапазоне не слишком лихорадит - слушайте музыку, помогает...

Первые - трансформаторные - цирклотроны Electro-Voice работали только с ООС. Экономичности ради в них использовались пентоды, причем с перекрестным питанием экранирующих сеток, из них выжимали все, что можно. Современный цирклотрон те же 20Вт снимает не с пары 6П6С, а с восьми 6Н13С. Так что вопрос нелинейных искажений, пресловутой третьей гармоники стоит не на первом Ватте, и даже не на десятом... А, кстати, что произойдет на десятом Ватте с однотактником на трехсотке? Это не ругани ради, это просто чтоб представить разницу в масштабах.

Теперь о классе А и АБ. Тут путаются и неизлечимые оппоненты, и даже вполне грамотные люди. Дальше - для грамотных! Рассмотрим реальный цирклотрон (Мамонт 1), 8 ламп 6Н13С на канал, нагрузка 8 Ом. Зададим ток покоя на триод - 75мА (всего - 1.2А, смещение при этом около -60В). При какой выходной мощности каскад перейдет из класса А в класс Б? Ограничимся синусоидой на входе для простоты примера. Моделирование в EWB 5.12 достаточно точно отражает суть процесса.

Традиционная логика говорит - при мгновенном токе нагрузки 0.6А (эффективное напряжение на нагрузке 3.4В, мощность - 1.5 Вт) одно плечо полностью закроется. 6Вт маловато будет. А теперь посмотрим, как на самом деле ведут себя токи плеч (возбуждение 9.2В эфф, выходное 3.4В эфф):

Ничего не закрывается! Ведь под катодом - не земля и не катодный конденсатор, а половина нагрузки! Закон трех вторых не забыли? Увеличиваем возбуждение, приближаемся к отсечке.

Опа! вот уже можно включать секундомер. На сетках - 20В эфф, на нагрузке - 7.3 В эфф, мощность в нагрузке - 6.6Вт. Вот это примерно и есть граница классов А-АБ. Теперь увеличим сопротивление нагрузки до 16 Ом при неизменном сеточном возбуждении. Форма тока вернется в класс А (примерно как на первом графике), на нагрузке - 10.7В эфф, или практически те же 7.0 Вт. Граница же А-АБ сместится к 13Вт на выходе (14.4 В эфф на нагрузке). Да, схема любит высокие сопротивления нагрузки, я предупреждал. А кто их не любит..

И никаких проблем с трансформатором в отсечке. Отсечка в жизни, кстати, менее резкая чем на идеальных моделях - лампа закрывается не так охотно.

Ну и наконец, как оно звучит? Оппоненты, честно скажите - какой цирклотрон, когда и в какой системе Вы слушали? Мамонт - всегда готов к Вашим услугам. Приходите, поругаем вместе...

Ccылки и благодарности:

    Современные цирклотроны Ральфа Карстена

 
Статьи по теме:
Проверка рабочей тормозной системы
Нормативы эффективности торможения рабочей и аварийной тормозных систем, соответствующие СТБ 1641-2006, приведены в таблице: Таблица. Нормативы эффективности торможения транспортных средств рабочей и аварийной тормозных систем при проверках на стендах
Транспондеры: какой выгоднее?
9 января 2018 года по некоторым маршрутам платной дороги М-11 Москва-Санкт-Петербург на участке 15-58 км, строительство и эксплуатация которого осуществляется в рамках концессионного соглашения, меняется стоимость проезда. Для легкового транспорта основны
Микросхема MC34063 схема включения
Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь н
Как своими руками сделать педаль джимми хендрикса
Всем привет! Сегодняшняя статья посвящена примочкостроительству целиком и полностью. После её прочтения, ты сможешь с закрытыми глазами левой пяткой правой ноги собрать свой первый рабочий девайс. Ну или почти.У вопроса «Что заставляет гитариста взять